
Postprint, December 15, 2023

Process Query Language:
Design, Implementation, and Evaluation

Artem Polyvyanyya, Arthur H. M. ter Hofstedeb, Marcello La Rosaa,
Chun Ouyangb, Anastasiia Pikab

aSchool of Computing and Information Systems
The University of Melbourne, Parkville, VIC, 3010, Australia

bQueensland University of Technology
2 George St., Brisbane City, QLD, 4000, Australia

Abstract

Organizations can benefit from the use of practices, techniques, and tools from
the area of business process management. Through the focus on processes, they
create process models that require management, including support for versioning,
refactoring and querying. Querying thus far has primarily focused on structural
properties of models rather than on exploiting behavioral properties capturing
aspects of model execution. While the latter is more challenging, it is also more
effective, especially when models are used for auditing or process automation.
The focus of this paper is to overcome the challenges associated with behavioral
querying of process models in order to unlock its benefits. The first challenge
concerns determining decidability of the building blocks of the query language,
which are the possible behavioral relations between process tasks. The second
challenge concerns achieving acceptable performance of query evaluation. The
evaluation of a query may require expensive checks in all process models, of
which there may be thousands. In light of these challenges, this paper proposes a
special-purpose programming language, namely Process Query Language (PQL)
for behavioral querying of process model collections. The language relies on a
set of behavioral predicates between process tasks, whose usefulness has been
empirically evaluated with a pool of process model stakeholders. This study
resulted in a selection of the predicates to be implemented in PQL, whose
decidability has also been formally proven. The computational performance of
the language has been extensively evaluated through a set of experiments against
two large process model collections.

Keywords: Process querying, process repository, process model collection,
process model, process instance, process, searching, retrieving, querying

Email addresses: artem.polyvyanyy@unimelb.edu.au (Artem Polyvyanyy),
a.terhofstede@qut.edu.au (Arthur H. M. ter Hofstede), marcello.larosa@unimelb.edu.au
(Marcello La Rosa), c.ouyang@qut.edu.au (Chun Ouyang), a.pika@qut.edu.au
(Anastasiia Pika)

1. Introduction

Through the application of methods and techniques from the field of busi-
ness process management, organizations can identify, model, analyze, redesign,
automate, monitor, and query their business processes [1, 2, 3, 4]. This process-
oriented thinking provides great benefits as making processes explicit through
conceptual representations, i.e., process models, allows organizations to subject
these processes to various forms of analysis, to use them as the basis for au-
tomated support, and to adapt them more easily as well as more rapidly to
continual changes imposed by the organization’s environment, both internal and
external. As a consequence, some organizations have collected large numbers
of process models. Examples of large process model collections reported in the
literature are the SAP R/3 reference model (600+ models) [5], the IBM BIT
collection in finance, telecommunication, and other domains (700+ models) [6],
a collection of healthcare process models from a German health insurance com-
pany (4,000+ models) [7], and a collection of insurance process models from
Suncorp—one of the largest insurance groups in Australia (6,000+ models) [8].

Process model collections evolve over time through model adaptations, merg-
ers, and additions, and their maintenance poses significant challenges. To support
these activities, it should be possible to query a potentially large repository of
process models to retrieve models with specific characteristics. Process query-
ing studies automated methods for managing, e.g., retrieving or manipulating,
process models in process model repositories [4]. A process querying method is
a technique that given a process model repository and a formal specification
of an instruction to manage the repository, i.e., a process query, systematically
implements the query in the repository [9].

Existing languages for specifying process queries, for example BP-QL [10] and
BPMN-Q [11], predominantly focus on structural aspects of process models [12, 4].
Specifically, they treat process models as annotated directed graphs, where
annotations denote types of graph nodes, e.g., process tasks, activities, events,
and decisions. The semantics of such queries is based on paths and patterns
in the process model graphs and is implemented via graph querying [13, 14].
An alternative way to query a process model repository is by using behavioral
relations between model elements, e.g., relations which capture that process
tasks can be performed in a particular order, in parallel, or can never be executed
as part of the same process instance; we use the term process instance to refer
to an artifact that encodes an execution of a process model, e.g., a sequence
of tasks that can be executed according to the semantics of the process model.
Process querying methods grounded in the querying of process model graphs
are not suitable to adequately analyze behavioral relations induced by process
models for at least two reasons. Firstly, behavioral relations are often defined
over all process instances of a model. As a process model can describe infinitely
many instances, it is challenging to specify a query that addresses all process
instances of the model over the finite graph of this model. Secondly, infinitely
many structurally different process models can describe the same behavioral
relations [15, 16]. Consequently, it is challenging to specify a query that accounts

2

for all possible structural patterns of models that can describe the relations.

Storage

type is to be

blocked for

inventory

Storage

type block

Storage

type is

blocked

Annual

inventory

WM to be

performed

V

Annual

inventory

WM

X

Cycle

counting

WM

Continuous

inventory

WM

Continuous

inventory

WM is to be

performed

Cycle

counting

is to be

performed

Physical

inventory is

active

System

inventory

record

is created

Storage bin

is blocked

Print

inventory

list

Physical

inventory list

is printed

Enter count

results

Recount is

necessary

Recount is

initiated

Start

inventory

recount

Recount

is not

necessary

No

variance is

determined

Clear

differences

WM

V

Physical

inventory is

completed

Storage

bin is

unblocked

Difference

is posted to

interface

Inventory

history is

updated

Clear

differences

IM

Difference

is posted

in IM

e1

e2 e3

e4 e5

e6 e7 e8

e11

e9

e10

e12 e13

e14 e16 e17e15

e18

f1

f2 f3 f4

f5

f6

f7

f8

f9

c1

c2

c3

c4

c5

c6

V

X

X

Fig. 1: An EPC model from SAP R/3.

The process model in Fig. 1 was
extracted from the SAP R/3 reference
model [5]. It is captured using the
Event-driven Process Chain (EPC) lan-
guage [17]. In this language, hexagons rep-
resent events, rounded rectangles encode
functions, arrows capture the control flow,
and circles represent logical connectors.
The model in Fig. 1 should be retrieved
as a response to the user’s intent to find
all process models in the repository that
describe executions in which every occur-
rence of event “Physical inventory is active”
(denoted by e8 in the figure) can be trig-
gered concurrently (at the same time) with
every occurrence of function “Start inven-
tory recount” (f7), and all occurrences
of function f7 precede, or are the cause
for, all occurrences of functions similar
to “Clear differences”, assuming that func-
tion names “Clear differences WM” (f8)
and “Clear differences IM” (f9) are consid-
ered to be sufficiently similar to “Clear dif-
ferences”. The model describes infinitely
many instances in which the functions and
event from the query occur; the infinite
number of instances is due to the ability
to repeat function f7 infinitely often by
following the cycle in the control flow of
the model. Consequently, it is not imme-
diate to implement the query via querying
over the model graph, as infinitely many
graph walks must be checked. Moreover,
Fig. 1 is one of infinitely many ways the
functions and event from the query can be
composed in a model to ensure the behav-
ioral relations from the query hold. For
example, the many potential occurrences
of function f7 in the model in Fig. 1 stem
from the cyclic control flow. However, in
another model that matches the example
query, these occurrences may be due to
the occurrences of different functions that
all have the same name of “Start inventory recount”. As, in general, one can
construct a model with any number of such functions, it is not immediate to

3

anticipate the number of different walks that need to be checked in the process
model graph when designing the query.

The added expressiveness of a query language grounded in behavioral relations
comes at a price. Behavioral relations cover a broad spectrum of inter-task
dependencies that may be captured using special property specification languages,
e.g., temporal logics. Temporal logics are powerful enough to be able to express
properties that are undecidable [18, 19]. Hence, a query language that exploits
behavioral relations needs to be carefully designed to support behavioral inter-
task dependencies that can be computed.

While some behavioral relations are decidable, their use may not be intuitive
to the stakeholders of the query language, i.e., the business analysts that will
end up formulating queries. Thus, it is important that a relation is likely to be
frequently used in queries in practice to warrant its inclusion in the language and
that its formal meaning is close to its perceived meaning. Another consideration
is that query evaluations are performed in a “reasonable” amount of time. In fact,
it is anticipated that process model stakeholders may wish to see the answers to
their queries in (almost) real-time, to quickly evaluate different scenarios when
updating existing or creating new models.

This paper proposes Process Query Language (PQL)—a special-purpose
programming language for querying repositories of process models based on
process instances that these models describe. PQL programs are called queries.
PQL allows formulating queries for retrieving process models from repositories
using a selected number of behavioral inter-task relations, called predicates. The
PQL predicates are built upon the 4C spectrum [20]—a systematic classification
of possible behavioral relations between process model tasks according to four
categories: conflict, co-occurrence, causality, and concurrency.

PQL implements the process querying compromise [21] by supporting decid-
able, efficiently computable queries whose practical relevance has been confirmed
by practitioners in terms of the perceived usefulness, importance, and frequency
of use. We demonstrate that PQL predicates are decidable by reducing their
computations to the reachability problem [22], the covering problem [23], or
the problem of structural analysis over a complete prefix [24, 25] of the unfold-
ing [26] of the model. Although PQL predicates are computationally demanding,
e.g., solving the reachability problem required exponential space [27], the con-
ducted experiments demonstrate the feasibility of using PQL in practical settings.

To facilitate query formulation, PQL is provided with the abstract syntax
and a concrete syntax, the latter inspired by the SQL language. To tackle the
performance problem typical for checking behavioral properties, the implemented
PQL runtime environment relies on the use of indexed behavioral relations,
i.e., behavioral relations get precomputed and reused during the evaluation of
PQL queries. The performance of PQL query evaluation is assessed through
extensive experiments with real-life and synthetic process model collections.

In summary, the contributions of this paper are as follows:

○ Empirical evidence for the appropriateness of behavioral process querying,
i.e., the quality of behavioral process querying to be a proper way for retrieving

4

process models based on behavioral inter-task relations;
○ A selection of empirically justified behavioral inter-task relations for behavioral
process querying based on quantitative feedback from prospective users;

○ Design of a query language, viz. PQL, based on the selected behavioral inter-
task relations and qualitative feedback from prospective users;

○ An open-source implementation of a runtime environment for PQL queries;
○ A performance evaluation of the PQL implementation that confirms the feasi-
bility of running PQL queries in close to real-time over industrial repositories;

○ A procedure for deciding whether two tasks are in the TotalConcurrent

behavioral relation, one of the empirically justified PQL predicates whose
decidability was never discussed in the literature.

These contributions build on and significantly extend our prior work. The
abstract syntax of PQL is inspired by that of A Process-model Query Language
(APQL) [28]. Furthermore, the dynamic semantics of PQL is grounded in
the behavioral relations of the 4C spectrum [20]; this is the first time these
relations are proposed for process querying. The denotational semantics of
PQL, differently from APQL, is defined over occurrences of names, or labels,
of process elements in process instances, like names of functions and events in
EPCs in the example query above, while APQL addresses querying over element
occurrences. Hence, PQL queries address querying over the meaning of the
processes abstracting from how they are implemented in models. In addition,
for the first time, the behavioral predicates included in PQL were selected based
on the results of an empirical study with the stakeholders of the language. The
declarative approach for process querying presented in this article complements
the scenario-based querying [29] supported by PQL. The scenario-based querying
allows specifying query conditions that address querying of imperative process
descriptions. Neither can it implement the behavioral predicates proposed in
this article, nor can the predicates implement scenario-based querying.

The next section motivates PQL by discussing several example PQL queries.
Section 3 introduces basic notions that are used to support the subsequent
discussions of the denotational semantics of PQL queries. Next, Section 4
discusses the results of an empirical study that suggest a selection of behavioral
predicates for querying process models. Section 5 presents the PQL language.
Section 6 is devoted to our implementation of PQL, while Section 7 reports
results of an evaluation of this implementation using one industrial and one
synthetic process model collection. Finally, Section 8 reviews related work,
whereas Section 9 states concluding remarks.

2. Motivating Examples

This section motivates PQL by introducing its key elements via three example
queries. The model in Fig. 1 sets the context for the examples; the queries
refer to labels of functions and events in the model. To support the discussions,
Table 1 lists six behavioral relations over functions and events of the model
and the corresponding behavioral predicates that denote the relations. The

5

Table 1: Behavioral relations over functions and events of the model in Fig. 1 and
corresponding behavioral predicates.

No. Behavioral relations Behavioral predicates

1 In every process instance, every occurrence of event TotalConcurrent(e8,f7)
“Physical inventory is active” (e8) can be triggered
concurrently with every occurrence of function “Start
inventory recount” (f7)

2 In every process instance, all occurrences of function TotalCausal(f7,f9)
“Start inventory recount” (f7) precede all occurrences
of functions “Clear differences WM” (f8) and “Clear
differences IM” (f9)

3 Function “Print inventory list” (f5) occurs in every AlwaysOccurs(f5)
process instance

4 Either both or neither of the events “Storage type is Cooccur(e2,e3)
blocked” (e2) and “Annual inventory WM to be
performed” (e3) occur in a process instance

5 Function “Start inventory recount” (f7) can occur in CanOccur(f7)
at least one process instance

6 Event “No variance is determined” (e13) and Conflict(e13,f8)
function “Clear differences WM” (f8) never occur
together in a process instance

predicates are used in the example queries as underlying constructs of PQL. The
precise definitions of the predicates are postponed till Section 4.1.

Example 1. Recall the example query from the Introduction: Retrieve all process
models that describe executions in which every occurrence of event e8 can be
triggered concurrently with every occurrence of function f7 (see predicate 1 in
Table 1), and all occurrences of function f7 precede all occurrences of every
function with a label similar to “Clear differences”, like functions f8 and f9 in
Fig. 1 (see predicate 2). This query (Q1) can be captured in PQL as follows:

SELECT "ID" FROM "/SAP-R3-EPC-Repo"

WHERE TotalConcurrent("Physical inventory is active","Start inventory recount")

AND TotalCausal("Start inventory recount",∼"Clear differences");

This query retrieves models and their ID’s from location "/SAP-R3-EPC-Repo"
in the process model repository. Note that ∼"Clear differences" in the PQL
query above specifies a task (either an event or a function in an EPC model)
with a label that is similar to "Clear differences".

Example 2. The user wants to retrieve the models, with their ID’s and titles,
where at least one of the functions “Continuous inventory WM” (f2), “Annual
inventory WM” (f3), and “Print inventory list” (f5) occurs in every instance
(see predicate 3 in Table 1); or either both or neither of the events “Storage type
is blocked” (e2) and “Annual inventory WM to be performed” (e3) occur in a
process instance (predicate 4). The PQL query (Q2) below captures this intent.

SELECT "ID","Title" FROM "/SAP-R3-EPC-Repo"

WHERE AlwaysOccurs({"Continuous inventory WM","Annual inventory WM",

"Print inventory list"},ANY)
OR Cooccur("Storage type is blocked","Annual inventory WM to be performed");

6

Query Q2 contains one macro, see AlwaysOccurs({f2,f3,f5},ANY), which com-
bines results of three behavioral predicates connected via logic OR operators,
namely AlwaysOccurs(f2) OR AlwaysOccurs(f3) OR AlwaysOccurs(f5).

Example 3. The user wants to retrieve the models and all their attributes
(e.g., titles, versions, and authors) that satisfy conditions C1–C4 listed below.

(C1) Function “Start inventory recount” (f7), event “No variance is determined”
(e13), function or event with a label similar to “Clear differences”, such as
function “Clear differences WM” (f8) or function “Clear differences IM” (f9),
and function or event with a label similar to “Difference is posted”, such as
event “Difference is posted to interface” (e16) or event “Difference is posted
in IM” (e18), can occur in some process instances;

(C2) Inventory recount is optional, i.e., function “Start inventory recount” (f7) does
not occur in at least one process instance;

(C3) There is no process instance in which function or event with a label similar to
“Clear differences”, such as functions “Clear differences WM” (f8) and “Clear
differences IM” (f9), and event “No variance is determined” (e13) both occur;

(C4) All occurrences of function “Start inventory recount” (f7) precede all occur-
rences of functions or events with labels similar to “Clear differences”, such as
functions “Clear differences WM” (f8) and “Clear differences IM” (f9), and
“Difference is posted”, such as events “Difference is posted to interface” (e16)
and “Difference is posted in IM” (e18).

The PQL query (Q3) listed below captures this user’s intent.

x = {"Start inventory recount","No variance is determined"};
y = {∼"Clear differences"};
z = y UNION {∼"Difference is posted"};
w = GetTasksAlwaysOccurs(GetTasks());

SELECT * FROM "/SAP-R3-EPC-Repo"

WHERE CanOccur(x UNION z,ALL) AND -- (C1)

(NOT ("Start inventory recount" IN w)) AND -- (C2)

Conflict("No variance is determined",y,ALL) AND -- (C3)

TotalCausal("Start inventory recount",z,ALL); -- (C4)

In PQL, the user can use variables to store sets of tasks (for example, functions
and events in the case of EPCs). In query Q3, variable x stores function f7 and
event e13, y contains one task that refers to functions f8 and f9, and variable z
stores the result of combining the task stored in y and the task that refers to
events e16 and e18; note that these definitions of variables are valid if the query
is matched to the model in Fig. 1. Variable w stores the tasks that occur in
every process instance of the model matched to the query. Note that GetTasks()
retrieves all the tasks of the model and GetTasksAlwaysOccurs() selects from
the input those tasks that occur in every process instance of the model.

The WHERE clause of query Q3 captures the four conditions (C1 to C4)
of the user’s query intent, as marked in the comments (starting with ‘--’).
Firstly, predicate macro CanOccur(x UNION z, ALL) checks if every task in the

7

set of tasks combined from x and z occurs in at least one process instance;
e.g., CanOccur(f7), see predicate 5 in Table 1, is part of the check. Next,
predicate (NOT ("Start inventory recount" IN w)) checks if the occurrence
of function f7 is optional. Then, predicate macro Conflict("No variance is

determined",y,ALL) checks if event e13 occurs in conflict with each of the
tasks stored in variable y; e.g., it is necessary to check Conflict(e13,f8),
see predicate 6 in Table 1. Finally, predicate macro TotalCausal("Start

inventory recount",z,ALL) checks if all occurrences of function f7 precede
all occurrences of every task stored in variable z; e.g., TotalCausal(f7,f9) is
one of the required checks, see predicate 2 in Table 1.

3. Preliminaries

This section introduces basic notions. Specifically, Section 3.1 gives back-
ground on business process modeling. Then, Section 3.2 introduces multisets,
sequences, and strings. Section 3.3 presents Petri net systems. Finally, Section 3.4
discusses processes and unfoldings of Petri net systems.

3.1. Business Process Modeling

s e
A

B

C

D

E

F

G

Fig. 2: A BPMN model.

Though the motivating exam-
ples discussed in Section 2 ad-
dress querying of EPC models,
the execution semantics of PQL
is grounded in Petri net systems.
As the semantics of many pro-
cess modelings languages, includ-
ing EPC [30], Business Process
Execution Language (BPEL) [31],
Yet Another Workflow Language (YAWL) [32], and Business Process Model and
Notation (BPMN) [33] is formalized via mappings to Petri net systems, PQL
can be applied over models captured in these languages.

For example, in a BPMN model, activities model process tasks and are
drawn as rectangles with rounded corners. Gateways are visualized as diamonds.
Exclusive gateways use a marker that is shaped like “×” inside the diamond
shape, whereas parallel gateways use a marker that is shaped like “+” inside the
diamond shape. Directed arcs encode control flow dependencies. Fig. 2 shows
an example BPMN model. For simplicity, the model uses abstract task labels.

3.2. Multisets, Sequences, and Strings

Let A be a set. By P(A) and B(A), we denote the power set of A and the
set of all finite multisets over A, respectively. We define a multiset B ∈ B(A) as
a function B ∶ A→ N0, where N0 denotes the set of all natural numbers including
zero. For some multiset B ∈ B(A), B(a) is the multiplicity of element a ∈ A in
B, i.e., the number of times element a appears in multiset B.

By σ ∶= ⟨a1, a2, . . . , an⟩ ∈ A∗, we denote a sequence of length n ∈ N0 over a
set A, ai ∈ A, i ∈ [1 .. n], where A∗ denotes the Kleene star operation on set A.

8

The empty sequence is denoted by ⟨⟩. By ∣σ∣, we indicate the number of all
occurrences of elements in σ. By prefix(σ, i), we denote the prefix of σ up to
but excluding position i, whereas suffix(σ, i) is the suffix of σ starting from and
including position i, i ∈ N. Let η ∶= ⟨a,b,a,b,a,h,a,l,a,m,a,h,a⟩ be a sequence.
Then, ∣η∣ = 13, prefix(η,6) = ⟨a,b,a,b,a⟩, and suffix(η,6) = ⟨h,a,l,a,m,a,h,a⟩.

An alphabet is a non-empty finite set. The elements of an alphabet are
characters. A character string over an alphabet is a finite sequence of characters
from the alphabet. The characters of a string are usually written next to one
another. For example, q ∶= 101011 is a string over {0,1}. The character string
of length zero is called the empty string and is denoted by ϵ. By C, we denote
the universe of all finite character strings over letters of the English alphabet
(both lower- and uppercase), numerals, punctuation, and whitespace characters.

3.3. Petri Net Systems, Workflow Systems, and Soundness
A Petri net system is a model of a distributed system [34].

Definition 3.1 (Petri net systems).
A Petri net system, or a system, is a 5-tuple S ∶= (P,T,F, λ,M), where P and T
are finite disjoint sets of places and transitions, respectively, F ⊆ (P ×T)∪(T ×P)
is the flow relation, λ ∶ T → C is a labeling function that assigns labels to
transitions, and M ∈ B(P) is a marking of S. ⌟
Transitions of a Petri net system encode activities. If λ(t) ≠ ϵ, t ∈ T , then t is
observable; otherwise, t is silent. An element x ∈ P ∪ T is a node of S. A node x
is an input of a node y iff (x, y) ∈ F , while a node y is an output of x. By ●x,
we denote the preset of node x, i.e., the set of all input nodes of x, while by x●,
we denote the postset of x, i.e., the set of all output nodes of x.

A marking of a system encodes its state. A marking M is often interpreted as
an assignment of tokens to places, i.e., marking M ‘puts’ M(p) tokens at place p,
p ∈ P . The execution semantics of a Petri net system is defined in terms of possible
states and state transitions. Let S ∶= (P,T,F, λ,M) be a system. A transition
t ∈ T is enabled in M , denoted by M[t⟩, iff every input place of t contains at least
one token, i.e., ∀p ∈ ●t ∶M(p) > 0. If a transition t ∈ T is enabled in M , then t
can occur, which leads to a fresh marking M ′ ∶= (M ∖●t)⊎ t● of S, i.e., transition
t consumes one token from every input place of t and produces one token at
every output place of t. By M[t⟩M ′, we denote the fact that an occurrence of
t leads from M to M ′. A finite sequence of transitions σ ∶= ⟨t1, t2, . . . , tn⟩ ∈ T ∗,
n ∈ N0, is an occurrence sequence of S iff σ is empty or there is a sequence of
markings ⟨M0,M1, . . . ,Mn⟩, such that M0 =M and for every i ∈ [1.. n] it holds
that Mi−1[ti⟩Mi; σ leads from M0 to Mn denoted by M0[σ⟩Mn.

Petri net systems have an established graphical notation. In this notation,
places are visualized as circles, transitions are drawn as rectangles with their
labels depicted within the boundaries of the corresponding rectangles, every pair
of nodes (x, y) in the flow relation is drawn as a directed arc from x to y, and
tokens are depicted as black dots inside the assigned places.

A workflow system is a system with one source place, one sink place, every
node on a directed path from the source to the sink, and marking that puts one
token at the source place and no tokens elsewhere [35].

9

e1

f1

e2 e3

e5

f4f3

e4

f2

e7

e8e6

e11 f5

e9f7

e10

e12 e13

f8

e17e16

e15

e14

f9

e18

f6

c1

c3

c6

t2

t4

t6

i

o

p1

p2

p3

p4

c2

c4

c5

p5

p6

p7 p8

p9

p10

p11

p12

t1 t3

t5

Fig. 3: A workflow system.

Fig. 3 shows a workflow system that en-
codes the execution semantics of the model in
Fig. 1. It was obtained by first translating the
model in Fig. 1 into a Petri net system [36]
and then completing the system to a workflow
system [37, 38]. The fresh elements introduced
during the completion are highlighted in gray,
while the fresh arcs, in addition, are drawn using
dashed lines. In Fig. 3, transitions are labeled
with short names while the full names are given
in Fig. 1. For example, transitions with labels
f7 and e9 represent function “Start inventory

recount” and event “Physical inventory

list is printed” in the EPC model, respec-
tively. Transitions t1, t2, t3, t4, t5, and t6 intro-
duced during the completion, as well as transi-
tions c1, c3 and c6 that correspond to the logical
AND connectors in Fig. 1, are silent, while all
the other transitions in Fig. 3 are observable.

Every occurrence sequence that leads to the
marking that puts one token at the sink place
and no tokens elsewhere is its execution.

Definition 3.2 (Executions).
An execution of a workflow system S ∶=
(P,T,F, λ, [i]) with the source place i ∈ P is
an occurrence sequence of S that leads to [o],
where o ∈ P is the sink place of S. ⌟
By ES , we denote the set of all and only
executions of workflow system S. Let σ ∶=
⟨t1, t2, . . . , tn⟩ ∈ ES , n ∈ N0, be an execution of
S. Then, sequence α ∶= ⟨λ(t1), λ(t2), . . . , λ(tn)⟩
is the label execution of S induced by σ.
The sequences of transitions ⟨t2, e1, f1, e3⟩ and
⟨t3, e5, f4, c3, e7, f5, e9, e8, f6, e6, e13, t5, t6⟩ are two
example occurrence sequences of the system in
Fig. 3, whereas the latter is also its execution.
Note that ES , where S is the workflow system
in Fig. 3, is an infinite set of executions.

Petri net systems and workflow systems are subject to semantic correctness
constraints. One widely-used semantic correctness criterion for workflow systems
is soundness [35]. In a sound workflow system, every occurrence sequence can
be extended (via occurrences of its enabled transitions) to an execution of the
system, and every transition of the system is an element of at least one execution.
For example, the workflow system in Fig. 3 is sound.

10

3.4. Processes and Unfoldings

Executions of workflow systems capture orderings of transition occurrences.
One can rely on processes to adequately represent causality and concurrency
relations on transition occurrences [39]. By R+, we denote the transitive closure of
a binary relation R. Let f(X) ∶= {f(x)∣x ∈X} and f−1(z) ∶= {y ∈ Y ∣f(y) = z},
where X is a subset of f ’s domain Y .

Definition 3.3 (Processes).
A process of a system S ∶= (P,T,F, λ,M) is a 4-tuple π ∶= (B,E,G, ρ), where
B is a set of conditions, E is a set of events, G ⊆ (B ×E) ∪ (E ×B) is the flow
relation, such that G+ is irreflexive and ∀ b ∈ B ∶ ∣{e ∈ E ∣(e, b) ∈ G}∣ ≤ 1 ∧ ∣{e ∈
E ∣(b, e) ∈ G}∣ ≤ 1, and ρ ∶ B ∪E → P ∪ T is such that:

○ ρ(B) ⊆ P and ρ(E) ⊆ T , i.e., ρ preserves the nature of nodes,
○ ∀ b1, b2 ∈Min(π) ∶ (b1, b2) /∈ G+∧(b2, b1) /∈ G+, ∀ b1 ∈ B∖Min(π)∃ b2 ∈Min(π) ∶
(b2, b1)∈ G+, and ∀p ∈ P ∶M(p) = ∣ρ−1(p) ∩Min(π)∣, i.e., π starts at M , and

○ for every event e ∈ E and for every place p ∈ P it holds that
∣{(p, t) ∈ F ∣t = ρ(e)}∣ = ∣ρ−1(p)∩●e ∣ and ∣{(t, p) ∈ F ∣t = ρ(e)}∣ = ∣ρ−1(p)∩ e● ∣,
i.e., ρ respects the environment of transitions.

Note that Min(π) ∶= {b ∈ B ∣∀e ∈ E ∶ (e, b) /∈ G}; ●e ∶= {b ∈ B ∣ (b, e) ∈ G} and
e● ∶= {b ∈ B ∣(e, b) ∈ G}. ⌟

Therefore, a process of a Petri net system is an acyclic bipartite graph, in which
conditions and events are two disjoint sets of nodes, with a mapping from nodes
of the process to nodes of the system. Fig. 5 shows three processes of the
system in Fig. 4(a). Conditions and events of a process are drawn as places and
transitions, respectively. The labels in the figures encode mappings of nodes
of processes to nodes of the system. In particular, each condition bi maps to
place pi, i ∈ [1..7], and each event ej maps to transition tj , j ∈ [1..6]. In general,
several conditions (events) of a process can refer to the same place (transition)
of the corresponding system. For example, there exist processes of the system
in Fig. 3 in which several conditions and several events refer to the same place
and transition, respectively. These are the processes that describe multiple
occurrences of transitions in the loop with entry place c4 and exit place c5.

Given a process π of a system S, by Eπ and ρπ we refer to events of π
and the function that maps nodes of π to nodes of S, respectively. A process
π of S can be interpreted as a collection of occurrence sequences of S, where
every event e ∈ Eπ describes an occurrence of transition ρπ(e). For example,
the process in Fig. 4(b) describes a single occurrence sequence of the system
in Fig. 4(a), namely ⟨t1, t3, t5⟩, whereas the process in Fig. 4(c) describes two
occurrence sequences of the system in Fig. 4(a), namely ⟨t1, t3, t4, t5, t6⟩ and
⟨t1, t3, t5, t4, t6⟩. Given a workflow system S, by ΠS we denote the set that
contains all and only processes of S (up to isomorphism) that describe all the
executions of S. Note that the set of all processes of a workflow system can
be infinite. For example, the set of all processes of the system in Fig. 3 that
describe all its executions is infinite. Let S be the workflow system in Fig. 4(a).

11

p1

a'

a''

b

c

d

e
p7p2

p3

p5

p4

p6

t1

t2

t3

t4

t5

t6

(a)

b1
e1 e3

e5

b2

b3

b5 b6

(b)

b1
e1 e3

e4

e5

e6
b7b2

b3

b5

b4

b6

(c)

b1
e2 e3

e4

e5

e6
b7b2

b3

b5

b4

b6

(d)

Fig. 4: (a) A workflow system, and (b)–(d) its three processes.

Then, ΠS is composed of the two processes shown in Figs. 4(c) and 4(d); these
two processes describe all four executions of the system. Note that the process
from Fig. 4(b) is not in ΠS because the occurrence sequence it describes is not
an execution of S. Finally, by ∆S(x, y), where x, y ∈ C, we refer to the set
{π ∈ ΠS ∣∃ e1, e2 ∈ Eπ ∶ λ(ρπ(e1)) = x ∧ λ(ρπ(e2)) = y}, i.e., the set that consists
of every process in ΠS that contains an event that describes an occurrence of a
transition with label x and an event that describes an occurrence of a transition
with label y. Processes of systems can be characterized by the causality and
concurrency relations over their nodes [26, 39]. An event e1 ∈ Eπ causes event
e2 ∈ Eπ of a process π, denoted by e1 ↣π e2, iff (e1, e2) ∈ G+. Two events
e1 ∈ Eπ and e2 ∈ Eπ are concurrent in π, denoted by e1 ∣∣π e2, iff (e1, e2) /∈ G+

and (e2, e1) /∈ G+. Intuitively, the fact that event e1 is a cause for event e2
means that one has to observe an occurrence of transition described by e1 prior
to observing an occurrence of transition described by e2. The fact that two
events are concurrent means that the corresponding transitions can be enabled
simultaneously in some occurrence sequence of the system and be performed one
after another in any order. For example, for process π in Fig. 4(d) it holds that
e2 ↣π e6, e3 ↣π e4, and e5 ∣∣π e4.

The unfolding of a system is a possibly infinite acyclic graph that encodes all
the processes of the system [24, 25]. In [24], McMillan proposed an algorithm for
constructing a finite initial part of the unfolding, called a complete prefix of the
unfolding, which contains full information about all the processes of the system.

Fig. 5(a) shows a workflow system S obtained by translating the BPMN
model in Fig. 2 to a Petri net system, whereas Fig. 5(b) shows a complete prefix
of the unfolding U of S. In general, a complete prefix of the unfolding of a
system S ∶= (P,T,F, λ,M) is a 4-tuple U ∶= (B,E,G, ρ), where B and E are
disjoint sets of conditions and events, respectively, G ⊆ (B ×E) ∪ (E ×B) is the
flow relation, such that G+ is irreflexive, and ρ ∶ B ∪E → P ∪T is a function that
maps conditions to places and events to transitions.

In Fig. 5(b), conditions and events are shown as circles and rectangles,
respectively. Every condition bi, b

′
i, . . . represents one token at place pi, i ∈ N

and every event ej , e
′
j , . . . represents one occurrence of transition tj , j ∈ N [40].

McMillan proposes to associate every event e of a complete prefix of the unfolding

12

C

A

B

E

D

F

G

p1 p2

p3

p6

p4 p5

p7 p8

p9 p10

p11

p12t1 t2

t3 t4

t5 t6

t7 t8

t9t10

t11

(a)

e2

e5

e1

e3

e6

e4

e7 e8

e11

e10e9

b1 b2

b3

b6

b4 b5

b7 b8

b9 b10

b11

b12

e'4

e'6

e'7

b'4

b'7

b'5

b'8

b'9

(b)

Fig. 5: (a) A workflow system, and (b) a complete prefix of its unfolding.

of a Petri net system with a marking that one reaches by firing all the transitions
encoded by the events in the local configuration of e. The local configuration
of an event e, denoted by ⌈e⌉, is the set of events composed of e, all the events
from which there is a directed path to e, and no other events. For example,
⌈e4⌉ = {e1, e2, e3, e4} and ⌈e7⌉ = {e1, e2, e3, e4, e5, e6, e7}. One reaches the marking
[p5, p6] by firing transitions represented by the events in ⌈e4⌉, and the marking
[p9] by firing transitions represented by the events in ⌈e7⌉. These markings are
encoded by the sets of conditions {b5, b6} and {b9} in Fig. 5(b), respectively, and
are denoted by Cut(⌈e4⌉) and Cut(⌈e7⌉), respectively. Note that the marking
[p9] can also be reached in the system in Fig. 5(a) after occurrences of transitions
encoded by the events in the local configuration of event e′7.

If the construction of the prefix in Fig. 5(b) continues, the part that follows
Cut(⌈e′7⌉), will be isomorphic to the part of the prefix that follows Cut(⌈e7⌉).
Thus, McMillan proposes to stop the construction of the prefix at Cut(⌈e′7⌉) and
refers to e′7 and e7 as a cutoff and its corresponding event, respectively. We
denote the set of all the cutoff events of a complete prefix of the unfolding U
by cutoffs(U). Given a cutoff event e, by corr(e), we denote the corresponding
event of e. Thus, cutoffs(U), where U is a complete prefix of the unfolding in
Fig. 5(b), is equal to {e′7}, and corr(e′7) = e7. In the figure, the relation between
the cutoff and its corresponding event is shown by the dotted arrow.

4. Behavioral Predicates

This section presents the results of an empirical study with process modeling
experts.1 The results confirm that process querying based on behavioral inter-task

1The study has been granted approvals on behalf of the University Human Research Ethics
Committee, Queensland University of Technology, Australia, Ref. No. 1000001158, and the

13

relations is an appropriate method for retrieving process models from repositories
and suggest a selection of basic behavioral predicates for inclusion in PQL.
The section introduces a repertoire of behavioral predicates from our previous
work [20], refer to Section 4.1, presents the design of our empirical experiment,
Section 4.2, and summarizes the results of the experiment, Section 4.3.

4.1. Relations and Predicates

A behavioral relation over process tasks in a process model specifies an
ordering constraint for occurrences of the tasks in the instances described by the
model. It has been shown that there are four fundamental categories of binary
behavioral relations over process tasks: conflict, causality, concurrency, and
co-occurrence. These four categories of relations can be used to fully characterize
any constraints over occurrences of process tasks [26, 41, 42]. An occurrence
of a process task implies that all its causally dependent tasks have already
occurred and none of the conflicting tasks has been or will be observed, whereas
two concurrent tasks can be enabled for simultaneous execution [43]. Finally,
co-occurrence describes two process tasks that both occur in the same instance of
a process model. Note that the behavioral relations on tasks describe how they
can be executed and not how they are semantically related. For example, two
tasks in the conflict relation can never appear in the same instance of the model,
not to be confused with semantic interference studied in Stroop experiments
which look into how different concepts may conflict and, thus, complicate the
understanding of a phenomenon [44].

The 4C spectrum [20] is a systematic classification of behavioral relations
grounded in the four categories of conflict, co-occurrence, causality, and concur-
rency. The spectrum classifies the relations at different levels of granularity. For
example, given two process tasks, different relations from the spectrum assess
whether in all or some instances of the model, all or some occurrences of one
task are in a particular relation with all or some occurrences of the other task.
For example, one of the 4C relations specifies that all occurrences of task A are
concurrent to all occurrences of task B in all instances of a model, while another
relation assesses whether at least one occurrence of A is concurrent to at least
one occurrence of B in at least one instance of the process model. Given the
three degrees of freedom, i.e., process instances, occurrences of the first task,
and occurrences of the second task, and two parameters for each degree, i.e., all
or some, there are eight granularities of a particular behavioral relation.

We assessed twelve 4C spectrum predicates for their relevance for querying
process model collections. The selected predicates are listed in Table 2. Three
factors guided the selection of the predicates. The selected predicates must
cover all four behavioral categories. This decision should allow checking which
categories of behavioral predicates are more relevant for process querying. The
selected predicates must cover predicates of different granularity. This factor
should allow verifying predicates of which “strength” are more relevant for

Human Ethics Advisory Group, the University of Melbourne, Australia, Ref. No. 1851972.

14

Table 2: Twelve behavioral predicates. The binary predicates assume that each of the
tasks A and B can occur in at least one instance of the model.

Behavioral predicate Definition

CanOccur(A) Find all process models where task A occurs in at least
one instance.

AlwaysOccurs(A) Find all process models where task A occurs in every
instance.

Cooccur(A,B) Find all process models where it holds that if task A occurs
in some instance then task B occurs in the same instance,
and vice versa.

Conflict(A,B) Find all process models where it holds that there is no
instance in which tasks A and B both occur.

ExistCausal(A,B) Find all process models where in at least one instance
it holds that some occurrence of task A precedes some
occurrence of task B.

ExistTotalCausal(A,B) Find all process models where in at least one instance it
holds that tasks A and B both occur and every occurrence
of task A precedes every occurrence of task B.

TotalExistCausal(A,B) Find all process models where for every instance in which
tasks A and B both occur, it holds that some occurrence
of task A precedes some occurrence of task B.

TotalCausal(A,B) Find all process models where for every instance in which
tasks A and B both occur, it holds that every occurrence
of task A precedes every occurrence of task B.

ExistConcurrent(A,B) Find all process models where in at least one instance it
holds that some occurrence of task A can be executed at
the same time with some occurrence of task B.

ExistTotalConcurrent(A,B) Find all process models where in at least one instance it
holds that tasks A and B both occur and every occurrence
of task A can be executed at the same time with every
occurrence of task B.

TotalExistConcurrent(A,B) Find all process models where for every instance in which
tasks A and B both occur, it holds that some occurrence
of task A can be executed at the same time with some
occurrence of task B.

TotalConcurrent(A,B) Find all process models where for every instance in which
tasks A and B both occur, it holds that every occurrence
of task A can be executed at the same time with every
occurrence of task B.

process querying. Finally, the list of selected predicates must be concise. This
final decision was driven by the fact that the discussions of the predicates with
the study participant should take at most one hour.

4.2. Experiment Design

Armed with the list of predicates from Table 2, we designed an experiment
with two aims: (i) to understand the practical relevance of using behavioral
predicates for querying process repositories, and (ii) to identify the most relevant
predicates to implement in our query language. The experiment took the form of
a one-hour semi-structured interview to seek expert opinions from practitioners
that actively work with process models. The practitioners were contacted via

15

public posting in dedicated Internet groups in business process management and
process mining or approached directly using our industry network.

In the interviews, we explained to participants the rationale of the experiment
and introduced the main characteristics of the envisioned query language. We
explained the twelve predicates from Table 2 using simple examples and conducted
short tests to ensure that interviewees grasped the meaning of the predicates.
For example, to test the understanding of the CanOccur predicate, we checked
if the participants can “find all process models where task A occurs in at least
one instance” in an example collection of process models. After the preliminary
explanations and tests, we proceeded with the questionnaire in three parts.

In the first part, we collected demographic information on the participants.
For example, we asked the participants about the number and type of models
managed, the key problems faced with these models, and the extent of process
analysis conducted on these models daily.

In the second part, we used four metrics of data quality (usefulness, impor-
tance, likelihood, and frequency) as proxies for relevance by asking the following
four questions for each predicate, using 5-point Likert-type scales for the answers:

○ How useful would an answer to such a question type be for your process
analysis work?

○ How important is such a question type to your process analysis work?
○ During process analysis, how likely does such a question type occur?
○ During process analysis, how frequently does such a question type occur?

Usefulness and importance are two external metrics on data quality [45].
They focus on the use and effect of an information system (in our case, of a
given predicate in the PQL language), addressing the purpose and justification
of the system and its deployment in an organization. In the study, we adopted
the definition of usefulness from [46], which states that the perceived usefulness
of a system is “the degree to which a person believes that using a particular
system would enhance their job performance.” The importance of information
is defined in [47] as a degree to which information is a necessary input for task
accomplishment. Thus, usefulness and importance are measures of performance
enhancement and appropriateness and are both task- and user-dependent.

While Wand and Wang [45] present a range of external metrics, such as
timeliness, flexibility, sufficiency, and conciseness, we deemed usefulness and
importance to be the most representative in our context (assessing the relevance
of a behavioral predicate), in light of the need to keep the interview brief. Internal
metrics, such as accuracy, have been proven formally in this article.

We complemented usefulness and importance with likelihood and frequency,
two other data quality metrics which act as a proxy for the occurrence of a given
predicate during process analysis. Specifically, these latter two metrics measure
the intensity of using a predicate in an organization, i.e., the more likely and
frequently a predicate occurs, the more intense its use [48]. Thus, likelihood
and frequency are measures of significance and volume of problem occurrences.
Likelihood is commonly understood as the condition of something being likely,
or probable, while frequency is the rate at which something occurs over time.

16

Finally, in the third part of the questionnaire, we requested the interviewees
to provide additional comments on the envisioned query language.

During the interviews, we explained the selected data quality metrics and their
differences to the participants. The complete interview instrument, including the
presentation slides we used to guide the discussions while progressing through
the three parts of the interview, is publicly available.2

4.3. Experiment Results

We conducted 25 interviews with practitioners. The results of two interviews
were discarded, one because of inconsistency in the obtained feedback (the verbal
responses contradicted the written responses) and one due to the interviewee’s
background (CEO of a tool vendor with experience in managing internal processes
only), leading to a total of 23 interviews taken to the analysis phase.

All the interviewees work, or have worked in the past, with process models;
hence, all of them are potential future users of PQL. Most of our study partici-
pants have a degree in Information Technology, Computer Science, Information
Systems, Engineering, or Economics; at the undergraduate and/or graduate level.
Many study participants hold dual degrees, including degrees in psychology,
accounting, biology, political science, business and marketing, management, and
business process management (BPM). Four participants received a Ph.D. degree.
In their organizations, they have various roles; for example, they are employed
as business process analysts, business excellence managers, business architects,
process architects, and BPM consultants. The professional experience of the par-
ticipants ranges from half a year to over 40 years, with most of the interviewees
having more than 7 years of professional experience (12.5 years on average). The
interviewees reported that the number of process models they managed/analyzed
in their practice varies from dozens to thousands (2,780 models on average).
These models belong to different domains: insurance, banking, investment, busi-
ness recovery, HR, finance and budgeting, procurement, product lifecycle, IT
and change management, media, and healthcare. The type of models is also
varied, ranging from simple and structured to large, complex, and unstructured
models captured using EPC and BPMN languages. The most recurring problems
in managing process models are maintenance and understandability, validation,
compliance management, standardization, and audit. The profiles of the 23
interview participants are listed in Appendix A.

We analyzed the written responses and the transcripts of the discussions in the
third part of the interviews to identify categories [49] that relate to the motivation
for a language for behavioral querying of process model repositories. As a result,
we identified these categories: the relevance of behavioral querying, use cases
of behavioral querying, the relevance of behavioral predicates for querying,
label similarity, and concrete syntax. These categories informed the design of
PQL; refer to Section 5.1. Of the 23 interviewees, 18 explicitly commented

2https://doi.org/10.26188/21670385

17

Table 3: Medians and modes of the responses to the four questions on the relevance of
the twelve behavioral predicates collected in 23 interviews (Median/Mode).

C
a
n
O
c
c
u
r

A
l
w
a
y
s
O
c
c
u
r
s

C
o
o
c
c
u
r

C
o
n
f
l
i
c
t

E
x
i
s
t
C
a
u
s
a
l

E
x
i
s
t
T
o
t
a
l
C
a
u
s
a
l

T
o
t
a
l
E
x
i
s
t
C
a
u
s
a
l

T
o
t
a
l
C
a
u
s
a
l

E
x
i
s
t
C
o
n
c
u
r
r
e
n
t

E
x
i
s
t
T
o
t
a
l
C
o
n
c
u
r
r
e
n
t

T
o
t
a
l
E
x
i
s
t
C
o
n
c
u
r
r
e
n
t

T
o
t
a
l
C
o
n
c
u
r
r
e
n
t

Useful 4/5 4/4 4/5 4/4 3/2 4/4 3/4 4/5 3/4 3/4 4/4 4/4
Important 4/4 4/4 4/5 4/4 3/2 4/4 3/2 4/5 3/2 3/2 3/4 4/4

Likely 5/5 4/4 4/4 4/4 3/4 3/4 4/4 4/4 3/4 3/3 3/4 4/4
Frequent 4/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

Total 17/15 15/15 15/17 15/15 12/11 14/15 13/13 15/17 12/13 12/12 13/15 15/15

on the usefulness and importance of querying process model repositories using
behavioral predicates. Some of these comments are quoted in Appendix B.

To identify relevant predicates for inclusion in the query language, we analyzed
the central tendency of the responses obtained in the second part of the interviews.
As collected responses are ordinal, scores on the Likert scale, for each predicate
and question, we analyzed the median and mode of the responses. The results
are reported in Table 3. Each cell of the table between rows two and five and
between columns two and thirteen reports the median and mode (median/mode)
of the 23 responses collected for the question indicated in the first column
of the corresponding row and the predicate indicated in the first row of the
corresponding column. For example, the median and mode of the 23 collected
responses on the usefulness of the Cooccur predicate are ‘very useful’ (4) and
‘extremely useful’ (5), respectively. The last row in Table 3 reports the sums of
medians and modes over the four questions.

We selected the six most relevant, i.e., those with the highest median and
mode values, behavioral predicates for inclusion in PQL. These are the CanOccur,
AlwaysOccurs, Cooccur, Conflict, TotalCausal, and TotalConcurrent predi-
cates; the corresponding columns are highlighted with bold font in the table. Each
selected predicate has obtained a sum of at least 15 for median and mode. More-
over, all the median and mode values for the selected predicates have received
scores of at least 3 and cover all four behavioral categories. Interestingly, the
TotalCausal and TotalConcurrent predicates were perceived as more relevant
than other versions of the causality and concurrency predicates. Arguably, they
are simpler to understand and to relate to practice (e.g., for compliance purposes)
since it requires all instances of a process model to satisfy the behavioral relation
captured by the predicate. Finally, as Cooccur and Conflict are defined as
macros over CanCooccur and CanConflict predicates of the 4C spectrum [20],
we decided to also include these two latter predicates in the selection of the core
PQL predicates. CanCooccur(A,B) verifies if the model specifies at least one
instance that contains tasks A and B, while CanConflict(A,B) checks if the
model describes an instance that contains task A but does not contain task B.

18

Table 4: Expected minimal medians of responses (p-value of 0.05).

C
a
n
O
c
c
u
r

A
l
w
a
y
s
O
c
c
u
r
s

C
o
o
c
c
u
r

C
o
n
f
l
i
c
t

T
o
t
a
l
C
a
u
s
a
l

T
o
t
a
l
C
o
n
c
u
r
r
e
n
t

Useful 4 3 4 3 4 4
Important 4 3 3 3 3 3

Likely 4 3 4 3 4 3
Frequent 3 3 3 4 3 3

We performed sign tests to check if the medians of the responses are sig-
nificantly greater than specific values. The sign test is a nonparametric test
for hypotheses about a population median given a sample of observations from
that population [50]. These three observations justify the decision to perform
sign tests: (i) the scales used to collect the responses, except for the likelihood
scale, are not symmetric, (ii) the distances between the answers are not always
uniform, and (iii) the collected responses are often not normally distributed.

For each question and behavioral predicate, we performed three one-tailed
sign tests to check hypotheses of the form Hx

0 ∶M ≤ x, where M is the median
response to the question w.r.t. the predicate and x ∈ {1.5, 2.5, 3.5}. For example,
if one succeeds in rejecting hypothesis H2.5

0 , then the expected median response
to the corresponding question w.r.t. the behavioral predicate is 3 or higher. For
the six selected predicates, Table 4 reports expected minimal median values
of responses to the four questions; obtained by rejecting the corresponding
hypothesis based on p-values of at most 0.05. For example, the value of 3 for
the usefulness of the AlwaysOccurs predicate reported in Table 4 indicates that
we, based on the collected responses, were able to reject H1.5

0 and H2.5
0 , but

not H3.5
0 , for the corresponding combination of question and predicate. Thus, if

one repeats the study, we are at least 95% confident that the median response
on the usefulness of the AlwaysOccurs predicate will be at least 3. Thus, the
expected responses to the four questions w.r.t. the six selected predicates are
at least ‘moderately useful’ (3) or ‘very useful’ (4) for usefulness, ‘moderately
important’ (3) or ‘very important’ (4) for importance, ‘neutral’ (3) or ‘likely’
(4) for likelihood, and ‘occasionally’ (3) or ‘almost every time’ (4) for frequency.
Note that the minimal identified medians for the non-selected predicates were
generally lower than for the selected predicates.

To check whether the number of conducted interviews was sufficient to obtain
generalizable insights, we estimated the statistical power of our study using
G*Power 3.1 [51]. Given a sample size of n = 23, expecting a medium effect size
(0.3) and a low error probability (0.05), i.e., the probability that the observed
result is due to chance, our experiment design achieves a statistical power of
0.93, which is well above the suggested threshold of 0.8.

19

5. Language

This section presents PQL. Section 5.1 summarizes the core principles followed
in the design of PQL. Section 5.2 presents the abstract syntax of PQL, the core
structure of the language. Section 5.3 is devoted to the discussion of one
concrete syntax of the language, its machine- and human-readable specification.
Section 5.4 is devoted to the dynamic semantics, or the meaning, of PQL queries.
Section 5.5 states denotations of the PQL predicates and proposes techniques
for computing them. Finally, Section 5.6 discusses example PQL queries.

5.1. Design Principles

PQL has been designed using the principles of suitability, simplicity, orthogo-
nality, portability, decidability, and exploratory search support. Most of these
principles are the standard principles of programming language design [52, 53],
while the principle of exploratory search support, borrowed from information
retrieval, was motivated by the study reported in Section 4.

Suitability. PQL queries should support the fulfillment of practical tasks. This
principle is achieved by grounding the language in the behavioral predicates of
practical relevance to process practitioners; refer to Section 4 for details.

Simplicity. PQL queries should allow capturing intents in short, succinct
programs. The queries should be easy to read and comprehend. The concrete
syntax of PQL is inspired by SQL, a well-known language for querying relational
databases. Note that six participants of our study have explicitly suggested
that the envisaged process querying language should resemble SQL, and most
participants were familiar with SQL. Several quotes from the interviewees that
support the use of an SQL-like syntax for PQL are included in Appendix B.
Furthermore, to keep queries short, PQL macros provide users with a mechanism
to express several atomic statements using a single PQL construct.

Orthogonality. PQL should be based on a small number of behavioral predicates
that address orthogonal behavioral phenomena and allow combining them in
many different ways to express complex queries. PQL relies on predicates
grounded in the behavioral relations of the 4C spectrum [20] that systematizes
the four orthogonal behavioral relations of causality, conflict, concurrency, and co-
occurrence. Furthermore, PQL allows combining the predicates into propositional
logic formulas to express complex query intents and supports set operations that
can be used, for instance, to construct complex inputs to PQL macros.

Portability. PQL queries should be independent of implementation and exe-
cution environments and data formats. This principle is ensured by providing
rigorous definitions of the syntax and semantics of the language. Consequently,
one can implement PQL using different technologies that target various execution
environments. The semantics of PQL operates over Petri net systems, which
allows using PQL over process models captured in a wide range of modeling lan-
guages, as models captured using most of the well-established process modeling
languages can be translated to Petri net systems [30, 32, 33, 54].

20

Decidability. Given a PQL query and a process model, it should be possible to
decide if the model satisfies the query. For each PQL predicate, we demonstrate
that it can indeed be computed.

Exploratory search. An exploratory search is an approach to information
exploration which represents the activities carried out by users who are unfamiliar
with the domain or unsure about their goals or ways to achieve their goals [55].
Often, these users do querying to study the domain or foster learning.

A user of PQL may be unfamiliar with process models stored in the repository
or exact labels used to specify process tasks. Indeed, process models often
suffer from the inconsistent usage of labels, even when developed for the same
domain [56]. Consequently, a search procedure that relies on the exact comparison
of task labels is likely to miss some important matches of similar tasks. To address
this issue in PQL, task labels can be expanded. In information retrieval, a query
expansion is a process of reformulating the query to improve the effectiveness of
search results [57]. A task label can be reformulated into a similar label, e.g., using
the technique proposed in [58]. A fresh label can then replace the original label in
the seed query to obtain a new expanded query that can contribute the otherwise
unanticipated relevant matches to the search procedure. For example, the user
may be inclined to accept that the label “Print inventory list” used to model a
function in Fig. 1 is similar to the label “Produce inventory document” used in
a query. Several participants of the study reported in Section 4, suggested that
the language for behavioral querying of process models should support the users
in performing the exploratory search. Several quotes from the participants in
support of this claim are listed in Appendix B.

5.2. Abstract Syntax

The abstract syntax of a PQL query can be represented as an abstract syntax
tree. Each node of such a tree denotes a PQL construct. For example, Fig. 6
depicts the abstract syntax tree of sample PQL query Q3 introduced in Section 2.
Next, we discuss PQL constructs in detail, starting with the Query construct,
the top-level construct of every PQL query.

Query ≜ vars ∶ Variables; atts ∶ Attributes; locs ∶ Locations; pred ∶ Predicate

The Query construct is defined as an aggregate production composed of four
components. Thus, every PQL query is composed of variables, attributes,
locations, and a predicate. Intuitively, a PQL query specifies an intent to retrieve
models, and their attributes (atts), that are identified by the locations (locs)
and satisfy the predicate (pred), where the evaluation of the predicate relies on
information stored in the variables (vars). One can capture a PQL query using
abstract syntactic expressions. For example, the statement q ≜ Query(vars ∶
vs; atts ∶ as; locs ∶ ls; pred ∶ p) defines a query having vs, as, ls, and p, as
variables, attributes, locations, and a predicate, respectively.

21

Attributes (17)

Query (34)

Variables (16)

Locations (18)

Attribute

Universe

Location

LocationPath

Predicate (33)

Conjunction

SetOfTasks

SetOfTasks (19)

“Start
inventory
recount”

“No variance
is determined”

Variable (4)

VariableName SetOfTasks (3)

x SetOfTasksLiteral

Task (1)

ExactTask

Label

Task (2)

ExactTask

Label

“Clear differences”

Variable
Name

SetOfTasks (6)

y SetOfTasksLiteral

Task (5)

DefSimTask

Variable
Name

SetOfTasks (11)

z Union

SetOfTasks (8)

y

“Difference is posted”

SetOfTasks (10)

SetOfTasksLiteral

Task (9)

Variable (7) Variable (12)

SetOfTasks (14)

w SetOfTasksConstruction

UnaryPredicateName

AlwaysOccurs

SetOfTasks (13)

SetOfAllTasks

Variable (15)

UnaryPredicateConstruction

Label

DefSimTask

Label

/SAP-R3-EPC-Repo

UnaryPredicateMacro (22)

UnaryPredicateName
AnyAll

CanOccur
Union (21) All

x

SetOfTasks (20)

z

SetPredicate

Task (23)

Negation (26)

TaskInSetOfTasks (25)

SetOfTasks (24)

w

“Start inventory
recount”

ExactTask

Label

BinaryPredicateMacro (29)

BinaryPredicateName

AnyAll

Conflict

All

SetOfTasks (28)

y

Task (27)

“No variance is
determined”

ExactTask

Label

BinaryPredicateMacro (32)

BinaryPredicateName AnyAll

TotalCausal All

SetOfTasks (31)

z

Task (30)

“Start inventory recount”

ExactTask

Label

Variable
Name

Variable
Name

Variable
Name

Variable
Name

Variable
Name

Variable
Name

Variable
Name

Fig. 6: Abstract syntax tree of example PQL query Q3 from Section 2.

In PQL, variables, attributes, and locations are defined as list productions.

Variables ≜ Variable
∗

Attributes ≜ Attribute
+

Locations ≜ Location
+

A PQL query defines a sequence of zero, one, or more variables, denoted by
Variable∗. The lists of attributes and locations cannot be empty, denoted by
Attribute+ and Location+. A PQL variable is defined as follows.

Variable ≜ name ∶ VariableName; tasks ∶ SetOfTasks
Attribute ≜ Universe ∣ AttributeName
Location ≜ Universe ∣ LocationPath

A PQL variable associates a symbolic name with a set of PQL tasks. Tasks
are introduced in the language to refer to atomic units of observable behavior.
They are the smallest irreducible concepts observed during the execution of
process models. Each variable is an aggregate of two constructs: a variable name
(name ∶ VariableName) and a collection of tasks (tasks ∶ SetOfTasks). When a
predicate of a query is evaluated, every variable name mentioned in the predicate
is replaced by the corresponding set of tasks.

The Attribute construct is specified as a choice production with two al-
ternatives. Hence, a PQL attribute is either the universe attribute, denoted
by Universe, or the name attribute, denoted by AttributeName. The universe

22

attribute refers to all the attributes of process models in the repository. The
name attribute allows retrieving specific properties of process models, e.g., the
unique identifier, creation date, author, and version.

A location is used to identify process models that should be matched with
the query. A location is either the universe location, denoted by Universe,
or a path location, denoted by LocationPath. The universe location refers
to all process models in the scope of the query (usually, all process models
in the repository). Path locations allow fine-grained targeting of models. We
assume that repositories support mechanisms to address models via unique path
identifiers, e.g., using URIs [59] or XPath expressions [60].

PQL provides several alternatives for specifying sets of tasks.

SetOfTasks ≜ VariableName ∣ SetOfAllTasks ∣ SetOfTasksLiteral
∣ SetOfTasksConstruction ∣ Union ∣ Intersection ∣ Difference

First, one can use the VariableName construct to refer to the set of tasks asso-
ciated with the variable of that name. Second, one can use the SetOfAllTasks
construct, a dynamically-valued constant that refers to the set of all tasks of the
model currently being matched to the query. Third, one can specify a set of
tasks literal using the SetOfTasksLiteral construct.

SetOfTasksLiteral ≜ Task
∗

Task ≜ ExactTask ∣ DefSimTask ∣ SimTask
ExactTask ≜ label ∶ Label
DefSimTask ≜ label ∶ Label

SimTask ≜ label ∶ Label; sim ∶ Similarity

A PQL task is a collection of labels, i.e., character strings, similar to the given
label up to the specified similarity degree threshold. The explanation of the
differences between the ExactTask, DefSimTask, and SimTask constructs used
to define a PQL task is postponed to Section 5.4.

One can build a set of tasks using the SetOfTasksConstruction construct.

SetOfTasksConstruction ≜ UnaryPredicateConstruction

∣ BinaryPredicateConstruction
UnaryPredicateConstruction ≜ name ∶ UnaryPredicateName;

tasks ∶ SetOfTasks
BinaryPredicateConstruction ≜ name ∶ BinaryPredicateName;

tasks1 ∶ SetOfTasks;
tasks2 ∶ SetOfTasks; q ∶ AnyAll

AnyAll ≜ Any ∣ All

UnaryPredicateConstruction takes a set of tasks and a unary behavioral
predicate as input and constructs the set of tasks that contains every task from
the given set for which the predicate holds. BinaryPredicateConstruction

allows selecting those tasks from the given set for which the given binary

23

behavioral predicate holds, either with at least one or with all tasks taken from
another given set of tasks. The choice of a quantifier type, existential or universal,
to be used during the selections is implemented via the AnyAll construct.

PQL supports two unary and six binary behavioral predicates, see below.

UnaryPredicateName ≜ CanOccur ∣ AlwaysOccurs
BinaryPredicateName ≜ CanConflict ∣ CanCooccur ∣ Conflict

∣ Cooccur ∣ TotalCausal ∣ TotalConcurrent

Finally, a set of tasks can be constructed from other sets via the application of
the fundamental set operations of union, intersection, and difference, denoted
by the Union, Intersection, and Difference constructs, respectively.

Alternatives for specifying a PQL predicate are listed below.

Predicate ≜ UnaryPredicate ∣ BinaryPredicate ∣ UnaryPredicateMacro
∣ BinaryPredicateMacro ∣ SetPredicate ∣ TruthValue
∣ Negation ∣ Conjunction ∣ Disjunction ∣ LogicalTest

For instance, a predicate can be captured as a specimen of the UnaryPredicate
or BinaryPredicate construct.

UnaryPredicate ≜ name ∶ UnaryPredicateName; task ∶ Task
BinaryPredicate ≜ name ∶ BinaryPredicateName; task1 ∶ Task; task2 ∶ Task

PQL uses macros to combine results of several predicates into a single result.

UnaryPredicateMacro ≜ name ∶ UnaryPredicateName; tasks ∶ SetOfTasks;
q ∶ AnyAll

BinaryPredicateMacro ≜ BinaryPredicateMacroTaskSet

∣ BinaryPredicateMacroSetSet

The UnaryPredicateMacro construct is composed of a reference to a unary
behavioral predicate (name ∶ UnaryPredicateName), a set of tasks (tasks ∶
SetOfTasks), and a quantifier (q ∶ AnyAll). Intuitively, a single macro statement
p ≜ UnaryPredicateMacro(name ∶ n; tasks ∶ ts; q ∶ x) is equivalent to a check
of whether it holds that for at least one (if x is set to Any) or for every (if x is
set to All) task t in set of tasks ts statement UnaryPredicate(p.name; task ∶
t) evaluates to true. Similarly, one can rely on the BinaryPredicateMacro

construct to combine results of multiple BinaryPredicate checks.

BinaryPredicateMacroTaskSet ≜ name ∶ BinaryPredicateName; task ∶ Task;
tasks ∶ SetOfTasks; q ∶ AnyAll

BinaryPredicateMacroSetSet ≜ name ∶ BinaryPredicateName;
tasks1 ∶ SetOfTasks; tasks2 ∶ SetOfTasks;
q ∶ AnySomeEachAll;

AnySomeEachAll ≜ Any ∣ Some ∣ Each ∣ All

24

The BinaryPredicateMacroTaskSet construct checks whether the binary be-
havioral predicate (name ∶ BinaryPredicateName) holds between the given
task (task ∶ Task) and either at least one (if the AnyAll construct is instan-
tiated with the Any specimen) or every (All) task in the given set of tasks
(tasks ∶ SetOfTasks). Similarly, BinaryPredicateMacroSetSet checks whether
a binary behavioral predicate evaluates to true for certain pairs of tasks in the
Cartesian product of two given sets of tasks. When the Some option is used to
specify the AnySomeEachAll construct, PQL checks whether for some task in
the first set of tasks the specified behavioral relation holds with each task in the
second set of tasks. The Each option induces a check of whether for each task in
the first set the behavioral relation holds with some task from the second set.

PQL supports checks of basic binary relations between (elements of) sets of
tasks. These are captured in the production of the SetPredicate construct.

SetPredicate ≜ TaskInSetOfTasks ∣ SetComparison
TaskInSetOfTasks ≜ task ∶ Task; tasks ∶ SetOfTasks

SetComparison ≜ tasks1 ∶ SetOfTasks; oper ∶ SetComparisonOperator;
tasks2 ∶ SetOfTasks

SetComparisonOperator ≜ Identical ∣ Different ∣ OverlapsWith ∣ SubsetOf
∣ ProperSubsetOf

PQL can be used to check if a task is a member of a given set of tasks us-
ing the TaskInSetOfTasks construct, and to compare sets of tasks using the
SetComparison construct. PQL supports five set comparison operations that
refer to checks of whether two sets of tasks are identical (Identical), different
(Different), overlap (OverlapsWith), or whether one set of tasks is a subset
(SubsetOf) or a proper subset (ProperSubsetOf) of another set of tasks.

PQL supports two truth values: true and false. To allow using complex logical
statements, PQL supports standard logical operations of negation (Negation),
conjunction (Conjunction), and disjunction (Disjunction). Finally, PQL al-
lows testing whether a given logic value is true or false. These checks are reflected
in the options of the LogicalTest construct proposed below.

TruthValue ≜ True ∣ False
LogicalTest ≜ IsTrue ∣ IsNotTrue ∣ IsFalse ∣ IsNotFalse

For a grammar to be complete, all its constructs must be terminal. The following
PQL constructs are terminal: Any, Some, Universe, Different, SubsetOf,
True, False, CanOccur, and Conflict. All these constructs do not have an
internal structure. Several PQL constructs are defined in terms of special
sets. For example, PQL specifies VariableName, AttributeName, LocationPath,
Label, and Similarity, as VariableName ≜ id ∶ V, AttributeName ≜ id ∶ C,
LocationPath ≜ id ∶ C, Label ≜ value ∶ C, and Similarity ≜ value ∶ [0 ..1],
respectively, where V is the set of all legal PQL variable names.

PQL defines the Negation construct and four options associated with the
LogicalTest construct in terms of a single Predicate component, e.g., IsTrue ≜

25

pred ∶ Predicate and Negation ≜ pred ∶ Predicate. Appendix C presents an
implementation of the PLQ grammar that defines five remaining non-terminal con-
structs: Conjunction, Disjunction, Union, Intersection, and Difference.

5.3. Concrete Syntax

This section presents one concrete syntax of PQL; its machine- and human-
readable representation. The concrete syntax is inspired by SQL—a programming
language for managing data stored in a relational database management system
(DBMS) [61]. We keep the core structure of PQL queries as similar as possible
to that of SQL queries and reuse SQL keywords in PQL, given that the contexts
are similar. The reason for this is threefold:

○ Despite addressing different domains, dynamic processes versus static data,
the languages serve the same purpose—querying for information.

○ SQL is a widely used language supported by almost every DBMS. Its syntax is
well-recognized by technical specialists and analysts. By closely following the
concrete syntax of SQL, PQL becomes readily usable by many stakeholders.

○ As suggested by interviewees of the study reported in Section 4, it would be
beneficial for the syntax of the query language to resemble the syntax of SQL.

Given a PQL construct, its concrete syntax is defined by a function that takes a
specimen of the abstract construct as input and returns a collection of character
strings that are accepted as concrete encodings of the specimen. We denote
this function by the name of the construct with subscript c. For example, the
concrete syntax of a specimen of the Query construct is defined below.

Queryc(q ∶ Query) ≜ Variablesc(q .vars)
‘SELECT’ Attributesc(q .atts)
‘FROM’ Locationsc(q .locs)
(‘WHERE’ Predicatec(q .pred))? ‘;’

Thus, a PQL query is a character string that starts with a specification of vari-
ables, followed by the SELECT keyword, followed by a specification of attributes,
followed by the FROM keyword, followed by a specification of locations, followed
by the WHERE keyword, followed by a specification of a predicate, followed by
the semicolon mark. There can be an arbitrary number of whitespace charac-
ters between any two subsequent components of a query string. The order of
components is fixed, and the WHERE clause is optional in a query.

Specimens of PQL constructs associated with list productions are encoded as
string concatenations of concrete forms of their components and whitespace char-
acters. Sometimes, special symbols are injected between every two subsequent
components and/or at the beginning and end of the encodings. For example,
the concrete syntax of a list of variables is defined as follows.

Variablesc(vs ∶ Variables) ≜ isEmpty(vs) ? ‘’ ∶ Variablec(vs.FIRST)
Variablesc(vs.TAIL)

26

The empty list of variables is encoded as the empty string. Otherwise, its
encoding is constructed as a concatenation of a concrete form of its first element,
denoted by vs.FIRST , and an encoding of the list of all its other elements,
denoted by vs.TAIL. The concrete syntax of a PQL variable is defined below.

Variablec(v ∶ Variable) ≜ VariableNamec(v .name) ‘=’ SetOfTasksc(v .tasks) ‘;’

The concrete syntax of every other specimen of a PQL construct associated with a
list production includes a special symbol between every two subsequent elements.
This is the comma symbol, i.e., ‘,’, for specimens of Attributes, Locations,
and SetOfTasksLiteral, and the PQL keywords UNION, INTERSECT, EXCEPT,
AND, and OR, for specimens of Union, Intersection, Difference, Conjunction,
and Disjunction, respectively. In addition, every encoding of a specimen of
the SetOfTasksLiteral construct must begin with the opening curly bracket,
i.e., ‘{’, and end with the closing curly bracket, i.e., ‘}’. For example, the
character string ‘{"Buy item","Purchase product"}’ encodes a specimen of
SetOfTasksLiteral composed of two elements, where strings "Buy item" and
"Purchase product" are valid encodings of tasks. Note that PQL supports
three alternative concrete encodings of a PQL task.

ExactTaskc(t ∶ ExactTask) ≜ ‘"’ Labelc(t .label) ‘"’

DefSimTaskc(t ∶ DefSimTask) ≜ ‘∼’ ‘"’ Labelc(t .label) ‘"’

SimTaskc(t ∶ SimTask) ≜ ‘"’ Labelc(t .label) ‘"’ ‘[’ Similarityc(t .sim) ‘]’

Labels of PQL tasks must be enclosed in double quotes. A label can be preceded
by the tilde symbol, i.e., ‘∼’, or succeeded by an encoding of a similarity degree
threshold enclosed in square brackets. The tilde symbol denotes that one is
interested in all the tasks of which the label has a degree of similarity to the
specified label that is equal to or is larger than some preconfigured value. A
degree of similarity must be specified as a decimal representation of a real number
greater or equal to zero and less than or equal to one, e.g., 0.5 or .95.

A specimen associated with a choice production is a specimen of one of the
constructs from its list of alternatives. Thus, in what follows, we present concrete
encodings of the remaining aggregate productions.

The Universe construct is denoted by the asterisk symbol, i.e., ‘*’. The
specimens of the AttributeName and LocationPath constructs are denoted by
character strings enclosed in double quotes. A concrete encoding of a specimen
of the VariableName construct may contain lowercase letters from the English
alphabet, digits, and the underscore symbol, i.e., ‘ ’. It is necessary to use a
letter or the underscore symbol at the start of a variable name.

Next, we define possible concrete encodings of UnaryPredicateConstruction,
BinaryPredicateConstruction, and SetOfAllTasks.

UnaryPredicateConstructionc(upc ∶ UnaryPredicateConstruction) ≜
‘GetTasks’UnaryPredicateNamec(upc.name) ‘(’ SetOfTasksc(upc.tasks) ‘)’

27

BinaryPredicateConstructionc(bpc ∶ BinaryPredicateConstruction) ≜
‘GetTasks’BinaryPredicateNamec(bpc.name)
‘(’ SetOfTasksc(bpc.tasks1) ‘,’ SetOfTasksc(bpc.tasks2) ‘,’ AnyAllc(bpc.q) ‘)’

SetOfAllTasksc(ts ∶ SetOfAllTasks) ≜ ‘GetTasks’ ‘(’ ‘)’

The concrete encodings of specimens of these constructs follow the syntax for
specifying function calls used in many programming languages, i.e., a name
of a function to be called followed by a comma-separated list of parameters
which is enclosed in parentheses. For instance, one possible concrete encod-
ing of a SetOfAllTasks specimen is ‘GetTasks()’. In the case of specimens
of the UnaryPredicateConstruction and BinaryPredicateConstruction con-
structs, the names of functions are obtained by prefixing ‘GetTasks’ to names of
unary and binary predicates, respectively. The remaining components are used
as parameters of the corresponding functions. PQL exercises similar principles
when specifying the concrete syntax of predicates and macros, both for the unary
and binary cases. The concrete syntax for predicates proceeds as follows.

UnaryPredicatec(up ∶ UnaryPredicate) ≜
UnaryPredicateNamec(up.name) ‘(’ Taskc(up.task) ‘)’

BinaryPredicatec(bp ∶ BinaryPredicate) ≜
BinaryPredicateNamec(bp.name) ‘(’ Taskc(bp.task1) ‘,’ Taskc(bp.task2) ‘)’

The concrete syntax for denoting the PQL macros overloads the syntax for speci-
fying function calls that encode the PQL predicates, i.e., names of functions and
types of outputs are the same, both for a given predicate and the corresponding
macro. However, the types of inputs differ.

UnaryPredicateMacroc(upm ∶ UnaryPredicateMacro) ≜
UnaryPredicateNamec(upm.name) ‘(’ SetOfTaskc(upm.tasks) ‘,’

AnyAllc(upm.q) ‘)’

BinaryPredicateMacroTaskSetc(bpm ∶ BinaryPredicateMacroTaskSet) ≜
BinaryPredicateNamec(bpm.name)
‘(’ Taskc(bpm.task) ‘,’ SetOfTaskc(bpm.tasks) ‘,’ AnyAllc(bpm.q) ‘)’

BinaryPredicateMacroSetSetc(bpm ∶ BinaryPredicateMacroSetSet) ≜
BinaryPredicateNamec(bpm.name)
‘(’ SetOfTaskc(bpm.tasks1) ‘,’ SetOfTaskc(bpm.tasks2) ‘,’

AnySomeEachAllc(bpm.q) ‘)’

These syntax rules rely on the concrete encodings of AnyAll and AnySomeEachAll,
which, when instantiated, are specified as a specimen of the Any, Some, Each, or
All construct and are denoted by the PQL keywords ANY, SOME, EACH, and ALL,

28

respectively. A specimen of TaskInSetOfTasks can be specified as follows.

TaskInSetOfTasksc(in ∶ TaskInSetOfTasks) ≜ Taskc(in.task) ‘IN’

SetOfTaskc(in.tasks)

A specimen of SetComparison can be specified as two encodings of sets of tasks
with a representation of a comparison operator in between.

SetComparisonc(comp ∶ SetComparison) ≜
SetOfTaskc(comp.tasks1) SetComparisonOperatorc(comp.oper)
SetOfTaskc(comp.tasks2)

A set comparison operator is instantiated in PQL via a choice between speci-
mens of terminal constructs Identical, Different, OverlapsWith, SubsetOf,
ProperSubsetOf encoded using keywords EQUALS, NOT EQUALS, OVERLAPS WITH,
IS SUBSET OF, IS PROPER SUBSET OF, respectively. The terminal constructs True
and False get encoded as keywords TRUE and FALSE, respectively.

Predicate names are encoded as names of the corresponding terminal con-
structs, e.g., CanOccur and TotalCausal have concrete encodings ‘CanOccur’
and ‘TotalCausal’, respectively. Finally, the concrete encodings of Negation
and the four logical test constructs are proposed below.

Negationc(not ∶ Negation) ≜ ‘NOT’ Predicatec(not .pred)
IsTruec(test ∶ IsTrue) ≜ Predicatec(test .pred) ‘IS’ ‘TRUE’

IsNotTruec(test ∶ IsNotTrue) ≜ Predicatec(test .pred) ‘IS’ ‘NOT’ ‘TRUE’

IsFalsec(test ∶ IsFalse) ≜ Predicatec(test .pred) ‘IS’ ‘FALSE’

IsNotFalsec(test ∶ IsNotFalse) ≜ Predicatec(test .pred) ‘IS’ ‘NOT’ ‘FALSE’

5.4. Dynamic Semantics

The dynamic semantics of PQL is captured in meaning functions that describe
the effects of valid constructs using mathematical denotations over the following
domains: A, a universe of attribute names; B, a universe of attribute values;
L, a universe of locations; S, a universe of Petri net systems; T ∶= ℘≥1(C), the
universe of all tasks over the universe of character strings.3

Let χ ∶ A → ℘≥1(B) be a function that maps attribute names onto sets of
permissible attribute values. A PQL query formulates a request to retrieve
process models (and their attributes) from a given process model repository.

Definition 5.1 (Repositories).
A process model repository, or a repository, is a 6-tuple R ∶= (S,A,L, val , loc,≾),
where S ⊆ S is a finite set of systems, A ⊆ A is a finite set of attribute names, L ⊆ L
is a set of locations, val ∶ S×A→ B is the attribute value assignment function, s.t.
∀s ∈ S ∀a ∈ A ∶ val(s, a) ∈ χ(a), loc ∶ S → L is the location assignment function,
and ≾ is a reflexive binary relation over L, called location map. ⌟

3Given a set A, by ℘≥1(A) we denote the set of all non-empty subsets of A, i.e., the power
set of A without the empty set.

29

By Repository, we denote the universe of all possible repositories. Let k ∶=
(k1, k2, . . . , kn) ∈ K1 ×K2 × . . . ×Kn be a point in n-dimensional space, where
K1,K2, . . . ,Kn are some sets. The projection function πi(k), i ∈ [1 .. n], is
defined as πi(k) ∶= ki, where ki is the i-th coordinate of k.

The meaning function of the Query construct is defined as follows.

MQuery ∶ Query × Repository→ S × ℘(A × B)
MQuery[q ∶ Query, ≜ {(s, x) ∈ S × ℘(A × B) ∣

(S,A,L, val , loc,≾) ∶ Repository] (∃ l ∈MLocations(q.locs) ∶ loc(s) ≾ l) ∧
(π1(x) =MAttributes(q.atts)) ∧
(∀(a, v) ∈ x ∶ v = val(s, a)) ∧
(MPredicate(q.pred, s,MVariables(q.vars, s)))}

Similar as in [62], we denote the meaning function of a construct c by Mc.
The result of executing a query q in the context of a repository consists of

all the systems at locations nested in q.locs that satisfy predicate q.pred , and
attribute values of these systems requested in q.atts.

The meaning of a specimen of the Locations construct is defined below.

MLocations ∶ Locations→ ℘≥1(L)
MLocations[ls ∶ Locations] ≜ ⋃

i ∈ [1..∣ls ∣]
MLocation(lsi)

MLocation ∶ Location→ ℘≥1(L)

MLocation[l ∶ Location] ≜
⎧⎪⎪⎨⎪⎪⎩

L l is Universe

{MLocationPath(l)} otherwise

MLocationPath ∶ LocationPath→ L

Note the use of the is operator above. This operator specifies a Boolean
expression that checks if a specified specimen is a specimen of the given construct.

The meaning of a specimen of the Attributes construct is defined similarly
to that of the Locations construct and is proposed below.

MAttributes ∶ Attributes→ ℘≥1(A)
MAttributes[as ∶ Attributes] ≜ ⋃

i ∈ [1..∣as ∣]
MAttribute(asi)

MAttribute ∶ Attribute→ ℘≥1(A)

MAttribute[a ∶ Attribute] ≜
⎧⎪⎪⎨⎪⎪⎩

A a is Universe

{MAttributeName(a)} otherwise

MAttributeName ∶ AttributeName→ A

The overriding union of f ∶X1 → Y1 by g ∶X2 → Y2, denoted by f ⊕ g, is defined
by g ∪ {(x, f(x)) ∣ x ∈ dom(f) ∖ dom(g)}. Given a sequence of functions fs,
∣fs ∣ = n, ⊕n

i=1 fsi denotes the expression ((. . . ((fs1⊕ fs2)⊕ fs3)⊕ . . . fsn−1)⊕ fsn).

30

Next, we propose the denotation of a specimen of the Variables construct.

MVariables ∶ Variables × S→ ℘(V × ℘(T))

MVariables[vs ∶ Variables, s ∶ S] ≜
∣vs ∣
⊕
i=1
{MVariable(vsi, s,MVariables(prefix(vs, i), s))}

MVariable ∶ Variable × S × ℘(V × ℘(T)) → V × ℘(T)

MVariable[v ∶ Variable, s ∶ S, vals ∶ ℘(V × ℘(T))] ≜ (v.name.id ,MSetOfTasks(v .tasks, s, vals))

The denotation of a specimen vs of Variables is a set of variable-value pairs,
where a value is a set of tasks, computed in the context of process model s ∈ S as
the overriding union of meanings of the individual elements of vs . An element of
vs at position i ∈ [1..∣vs∣] is a specimen v = vsi of Variable. The meaning of v is
derived in the context of s and variable-value pairs vals computed based on the
prefix of vs up to but excluding position i, i.e., values of variables declared prior
to v, and is defined as a pair composed of a legal PQL variable name associated
with v.name and a set of tasks that stems from the denotation of v.tasks.

Let labels ∶ S→ ℘(C), be a function that, given a system, results in the set of
all the labels of its observable transitions. Let similar ∶ C × [0 ..1] → ℘≥1(C) be
a function that, given a label and a similarity level threshold, results in the set
of all labels that have similarity scores with the given label equal or greater than
the threshold. Then, the denotation of the SetOfTasks construct is as follows.

MSetOfTasks ∶ SetOfTasks × S × ℘(V × ℘(T)) → ℘(T)

MSetOfTasks[
ts ∶ SetOfTasks,

s ∶ S, vals ∶ ℘(V × ℘(T))]
≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vals(ts.id) ts is VariableName

{{λ} ∈ T∣λ ∈ labels(s)} ts is SetOfAllTasks

⋃i ∈ [1..∣ts∣]{MTask(tsi)} ts is SetOfTasksLiteral

MSetOfTasksConstruction(ts, s, vals) ts is SetOfTasksConstruction

⋃i∈[1..∣ts∣]MSetOfTasks(tsi, s, vals) ts is Union

⋂i∈[1..∣ts∣]MSetOfTasks(tsi, s, vals) ts is Intersection

MDifference(ts, s, vals) ts is Difference

The denotation of the Task construct is as follows.

MTask ∶ Task→ T

MTask[t ∶ Task] ≜
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{t.label} t is ExactTask

similar(t.label ,defSim) t is DefSimTask

similar(t.label , t.sim.value) t is SimTask

A specimen of Task denotes a PQL task, i.e., a non-empty set of character
strings. The meaning of a specimen t of ExactTask is a singleton that contains
label t.label . If t is a specimen of DefSimTask or SimTask, then its denotation
is the set of all labels in C that have similarity scores with t.label greater than
or equal to the default similarity threshold defSim or t.sim.value, respectively,
where defSim ∈ [0 ..1] is a global constant.

A set of tasks can be constructed by selecting tasks from a given set of
tasks, where the selection is implemented using a behavioral relation. To this

31

end, one can use SetOfTasksConstruction. Next, we give denotations of
UnaryPredicateConstruction and BinaryPredicateConstruction.

MUnaryPredicateConstruction[upc ∶
UnaryPredicateConstruction,

s ∶ S, vals ∶ ℘(V × ℘(T))]
≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{t ∈MSetOfTasks(upc.tasks,
s, vals) ∣ canOccur(s, t)}

upc.name is CanOccur

{t ∈MSetOfTasks(upc.tasks, s,
vals)∣alwaysOccurs(s, t)}

upc.name is AlwaysOccurs

MBinaryPredicateConstruction[bpc ∶
BinaryPredicateConstruction,

s ∶ S, vals ∶ ℘(V × ℘(T))]
≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{t1 ∈MSetOfTasks(bpc.tasks1, s, vals) ∣
∃ t2 ∈MSetOfTasks(bpc.tasks2, s, vals) ∶

canConflict(s, t1, t2)}

(bpc.q is Any)∧
(bpc.name is

CanConflict)

{t1 ∈MSetOfTasks(bpc.tasks1, s, vals) ∣
∀ t2 ∈MSetOfTasks(bpc.tasks2, s, vals) ∶

canConflict(s, t1, t2)}

(bpc.q is All)∧
(bpc.name is

CanConflict)
. . .

The use of a binary behavioral relation is determined by bpc.name. For exam-
ple, bpc.name of type CanConflict calls for the use of the CanConflict rela-
tion. Similarly, a specimen bpc.name of type CanCooccur, Conflict, Cooccur,
TotalCausal, and TotalConcurrent, signifies the use of the canCooccur , conflict ,
cooccur , totalCausal , and totalConcurrent relation, respectively (not shown
above). The denotations of canOccur and alwaysOccurs and the denotations of
all the binary predicates of PQL are proposed in Section 5.5.

As an example of constructing a set of tasks from other sets, the denotation
of the Difference construct is proposed below.

MDifference[d ∶ Difference,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜ {MSetOfTasks(d1, s, vals)∖MSetOfTasks(d2, s, vals) ∣d∣ = 2

MSetOfTasks(d1, s, vals)∖MDifference(suffix(d,2), s, vals) ∣d∣ > 2

The PQL grammar in Appendix C specifies that brackets, i.e., ‘()’, have the
highest priority, then difference ∖, then intersection ∩, and finally union ∪. Hence,
expression A∪B ∩ C∖(D∪E)∖F gets evaluated as A∪(B ∩ (C∖((D∪E)∖F))).

The denotation of Predicate is as follows.

MPredicate ∶ Predicate × S × ℘(V × ℘(T)) → {true, false}

The Predicate construct is defined as a choice production of ten alternatives.
In what follows, we discuss the meaning of six alternatives, whereas detailed
discussions of the remaining four alternatives can be found in Appendix D.

TruthValue refers to values of true and false from Boolean logic.

MTruthValue[p ∶ TruthValue, s ∶ S, vals ∶ ℘(V × ℘(T))] ≜
⎧⎪⎪⎨⎪⎪⎩

true p is True

false p is False

32

A predicate can be defined as a negation, conjunction, or disjunction of predicates.

MNegation[p ∶ Negation, s ∶ S, vals ∶ ℘(V × ℘(T))] ≜ ¬MPredicate(p.pred , s, vals)
MConjunction[p ∶ Conjunction, s ∶ S, vals ∶ ℘(V × ℘(T))] ≜ ⋀

i ∈ [1..∣p∣]
MPredicate(pi, s, vals)

MDisjunction[p ∶ Disjunction, s ∶ S, vals ∶ ℘(V × ℘(T))] ≜ ⋁
i ∈ [1..∣p∣]

MPredicate(pi, s, vals)

The PQL grammar in Appendix C specifies that brackets, i.e., ‘()’, have the
highest priority, then negation ¬, then conjunction ∧, and finally disjunction ∨.
Thus, expression ¬(a ∨ b ∧ c) ∨ d ∧ e is evaluated as (¬(a ∨ (b ∧ c))) ∨ (d ∧ e).

One can test whether a predicate evaluates to true or false as follows.

MLogicalTest[p ∶ LogicalTest,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜ {MPredicate(p.pred, s, vals) p is IsTrue ∨ p is IsNotFalse

¬ MPredicate(p.pred, s, vals) p is IsFalse ∨ p is IsNotTrue

The TaskInSetOfTasks construct tests if a task is a member of the given set.

MTaskInSetOfTasks[p ∶ TaskInSetOfTasks,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜ MTask(p.task) ∈ MSetOfTasks(p.tasks, s, vals)

In Table 5, we explain the meaning of query Q3 from Section 2 when matched
to the model in Fig. 1. The numbers in the first column in the table refer to
the constructs represented as nodes in the abstract syntax tree in Fig. 6. For
example, number 1 in the first column refers to node “Task (1)” in the figure.
The second column contains denotations of the corresponding constructs. Finally,
the third column contains our explanations. Assuming that the model in Fig. 1
is at a location in the set of locations denoted by node 18, it and its requested
attributes are included in the result of Q3. Note that s in the last row of the
table is the system in Fig. 3, the Petri net version of the model used to evaluate
the behavioral predicates included in the query.

Table 5: Meaning of PQL query Q3 from Section 2 explained using Fig. 6.

No. Denotation Explanation

1 {“Start inventory recount”} This is a specimen of ExactTask and, thus, it
denotes a singleton of its label.

2 {“No variance is determined”} This is a specimen of ExactTask and, thus, it
denotes a singleton of its label.

3 {{“Start inventory recount”}, {“No vari-
ance is determined”}}

This set of tasks is specified as a fixed value
composed of tasks denoted by 1 and 2.

4 (x,{{“Start inventory recount”}, {“No vari-
ance is determined”}})

This variable associates symbolic name x with
the set of tasks denoted by 3.

5 {“Clear differences”,“Clear differences
WM”,“Clear differences IM”}

This is a specimen of DefSimTask and, thus,
denotes the set of all labels in the repository
that are similar to its label.

6 {{“Clear differences”,“Clear differences
WM”,“Clear differences IM”}}

This set of tasks is specified as a fixed value
composed of the task denoted by 5.

7 (y,{{“Clear differences”,“Clear differences
WM”,“Clear differences IM”}})

This variable associates symbolic name y with
the set of tasks denoted by 6.

8 {{“Clear differences”,“Clear differences
WM”,“Clear differences IM”}}

This set of tasks is specified as the value as-
sociated by 7 with symbolic name y.

9 {“Difference is posted”, “Difference is
posted to interface”, “Difference is posted
to IM”}

This is a specimen of DefSimTask and, thus,
denotes the set of all labels in the repository
that are similar to its label.

33

10 {{“Difference is posted to IM”,“Difference
is posted to interface”,“Difference is
posted”}}

This set of tasks is specified as a fixed value
composed of the task denoted by 9.

11 {{“Difference is posted”,“Difference is
posted to interface”,“Difference is posted
to IM”}, {“Clear differences”,“Clear differ-
ences WM”,“Clear differences IM”}}

This set of tasks is computed as the union of
sets denoted by 8 and 10.

12 (z,{{“Difference is posted”,“Difference is
posted to interface”,“Difference is posted
to IM”}, {“Clear differences”,“Clear differ-
ences WM”,“Clear differences IM”}})

This variable associates symbolic name z with
the set of tasks denoted by 11.

13 {{“Storage type is to be blocked for
inventory”}, {“Storage type block”},
{“Storage type is blocked”}, ... }

This set of tasks is defined by all the labels
in the model from Fig. 1; each function and
event defines one PQL task in the set.

14 {{“Storage bin is blocked”}, {“System in-
ventory record is created”}, {“Physical
inventory is active”}, {“Print inventory
list”}, {“Physical inventory list is printed”},
{“Enter count results”}}

The set of tasks from the set denoted by 13
that occur in every instance of the model
in Fig. 1; the checks are performed on the
workflow system in Fig. 3 using the result of
Lemma 5.8.

15 (w,{{“Storage bin is blocked”}, {“System
inventory record is created”}, {“Physical
inventory is active”}, {“Print inventory
list”}, {“Physical inventory list is printed”},
{“Enter count results”}})

This variable associates symbolic name z with
the set of tasks denoted by 14.

16 {(x,{{“Start inventory recount”}, {“No
variance is determined”}}), ... }

The set contains values of all the variables
used in the query, i.e., it contains denotations
of 4, 7, 12, and 15.

17 A All attribute names in the repository.

18 {/SAP-R3-EPC-Repo} The set composed of one location specified by
the location path "/SAP-R3-EPC-Repo".

19 {{“Start inventory recount”}, {“No vari-
ance is determined”}}

This set of tasks is specified as the value as-
sociated by 4 with symbolic name x.

20 {{“Difference is posted”,“Difference is
posted to interface”,“Difference is posted
to IM”}, {“Clear differences”,“Clear differ-
ences WM”,“Clear differences IM”}}

This set of tasks is specified as the value as-
sociated by 12 with symbolic name z.

21 {{“Clear differences”,“Clear differences
WM”,“Clear differences IM”}, {“No
variance is determined”}, {“Start in-
ventory recount”}, {“Difference is
posted”,“Difference is posted to inter-
face”,“Difference is posted to IM”}}

This set of tasks is computed as the union of
sets denoted by 19 and 20.

22 true; every task in the set denoted by 21
occurs in at least one instance of the model.

The checks are performed on the system in
Fig. 3 using the result of Lemma 5.7.

23 {“Start inventory recount”} This is a specimen of ExactTask and, thus, it
denotes a singleton of its label.

24 {{“System inventory record is created”},
{“Print inventory list”}, {“Physical inven-
tory is active”}, {“Physical inventory list
is printed”}, {“Storage bin is blocked”},
{“Enter count results”}}

This set of tasks is specified as the value as-
sociated by 15 with symbolic name w.

25 false The task denoted by 23 is not a member of
the set of tasks denoted by 24.

26 true Negation of denotation of 25.

27 {“No variance is determined”} This is a specimen of ExactTask and, thus, it
denotes a singleton of its label.

28 {{“Clear differences”,“Clear differences
WM”,“Clear differences IM”}}

This set of tasks is specified as the value as-
sociated by 8 with symbolic name y.

29 true; the task denoted by 27 is in conflict
with every task in the set denoted by 28.

The checks are performed on the workflow
system in Fig. 3 based on Definition 5.6 using
the technique proposed in [20].

30 {“Start inventory recount”} This is a specimen of ExactTask and, thus, it
denotes a singleton of its label.

34

31 {{“Difference is posted”, “Difference is
posted to interface”, “Difference is posted
to IM”}, {“Clear differences”, “Clear differ-
ences WM”, “Clear differences IM”}}

This set of tasks is specified as the value as-
sociated by 12 with symbolic name z.

32 true; the task denoted by 30 is in the total
causal relation with every task in the set
denoted by 31.

The checks are performed on the workflow
system in Fig. 3 based on Definition 5.6 using
the technique proposed in [20].

33 true Conjunction of 22, 26, 29, and 32.

34 {(s,{(Author, SAP), ...}), ...} A result of query Q3 from Section 2.

5.5. Predicate Definitions and Computation

Section 5.5.1 presents formal definitions of the basic PQL predicates, while
Section 5.5.2 discusses their computations.

5.5.1. Definitions

Before presenting definitions of the predicates over PQL tasks, as demanded
by the semantics of PQL, we define them over character strings.

Predicates over character strings. Given a workflow system, the canOccur
and alwaysOccurs unary predicates over character strings are defined as follows.

Definition 5.2 (Can occur and always occurs).
Let S ∶= (P,T,F, λ,M) be a workflow system and let x ∈ C be a non-empty
character string. Then, x can occur in S, denoted by canOccur(S,x), iff there
is a label execution η of S such that x ∈ η, while x always occurs in S, denoted
by alwaysOccurs(S,x), iff for every label execution η of S it holds that x ∈ η.4 ⌟

Hence, a character string x ∈ C can occur in a workflow system S iff one can
observe x in some execution of S, i.e., an activity denoted by x can be performed
in some business scenario captured in S. In turn, x always occurs in S, iff it is
observed in every execution of S. Next, we define the binary predicates of PQL,
starting with the basic conflict and co-occurrence predicates.

Definition 5.3 (Basic conflict and co-occurrence).
Let S ∶= (P,T,F, λ,M) be a workflow system and let x, y ∈ C be two non-empty
character strings. Then, x can conflict with y in S, denoted by canConflict(S,x, y),
iff there is a label execution η of S such that x ∈ η and y /∈ η, while x and y can
co-occur in S, denoted by canCooccur(S,x, y), iff there is a label execution η of
S such that x ∈ η and y ∈ η. ⌟

Thus, x can conflict with y iff there is an execution of S that performs x but not
y, whereas x and y can co-occur iff they both can occur in an execution of S.
The 4C spectrum uses the basic conflict and co-occurrence relations as building
blocks of other relations, two of which are among the selected PQL predicates.

Definition 5.4 (Conflict and co-occurrence).
Let S ∶= (P,T,F, λ,M) be a workflow system and let x, y ∈ C be two non-empty
character strings. Then, x and y are in conflict in S, denoted by conflict(S,x, y),

4Given a sequence σ, x ∈ σ denotes the fact that x is an element of σ.

35

iff canConflict(S,x, y) ∧ canConflict(S, y, x) ∧ ¬ canCooccur(S,x, y), while x
and y co-occur in S, denoted by cooccur(S,x, y), iff ¬ canConflict(S,x, y) ∧
¬ canConflict(S, y, x) ∧ canCooccur(S,x, y). ⌟

Hence, x and y are in conflict in S iff they can be observed in some executions
of S but never together in the same execution. In contrast, x and y co-occur in
S iff they can be observed together in some executions of S, x is never observed
in an execution that does not include an occurrence of y, and vice versa, y is
never observed in an execution that does not include an occurrence of x.

Consider workflow system S in Fig. 4(a). The expression canOccur(S ,a′) ∧
¬ alwaysOccurs(S ,a′) evaluates to true. There exists a label execution η1 ∶=
⟨a′,b,c,d,e⟩ of S that justifies that a′ can occur in S, and a label execution
η2 ∶= ⟨a′′,b,c,d,e⟩ of S that justifies that a′ does not always occur in S. Note that
strings b, c, d, and e, always occur in S as they are present in all the four label ex-
ecutions of S. Furthermore, both canConflict(S,b,a′) and canCooccur(S,b,a′)
evaluate to true, as b can be observed without a′, for example in η2, and with
a′, for example in η1. Note that a and a′ are in conflict, i.e., conflict(S,a,a′)
evaluates to true, as these two strings are never observed together. Finally, b
and e co-occur in S, i.e., cooccur(S,b,e) evaluates to true.

The total causal and total concurrent relations are defined as follows.

Definition 5.5 (Total causality and total concurrency).
Let S ∶= (P,T,F, λ,M) be a workflow system and let x, y ∈ C be two non-
empty character strings. Then, x and y are total causal in S, denoted by
totalCausal(S,x, y), iff ∀π ∈ ∆S(x, y) ∀ e1 ∈ Eπ ∀ e2 ∈ Eπ ∶ (e1 ≠ e2 ∧ λ(ρπ(e1)) =
x ∧ λ(ρπ(e2)) = y) ⇒ e1 ↣π e2, while x and y are total concurrent in S, de-
noted by totalConcurrent(S,x, y), iff ∀π ∈ ∆S(x, y) ∀ e1 ∈ Eπ ∀ e2 ∈ Eπ ∶ (e1 ≠
e2 ∧ λ(ρπ(e1)) = x ∧ λ(ρπ(e2)) = y) ⇒ e1 ∣∣π e2. ⌟

For example, totalCausal(S ,a′,c) holds true for system S in Fig. 4(a), i.e., in
every execution of S in which a′ and c both occur, every occurrence of a′ precedes
every occurrence of c. In addition, totalConcurrent(S ,c,d) holds true in S.

Predicates over PQL tasks. Next, we lift the PQL predicates from input
labels to input PQL tasks, given as sets of character strings. The concept of a
PQL task allows handling several distinct labels as if they all represent the same
activity. For example, two character strings a′ ∶=“process payment by cash”
and a′′ ∶=“process payment by check” may be seen as sufficiently similar to
represent activity a ∶=“process payment”. To implement this intuition, PQL
uses the label unification principle proposed in [20].

Given a system S and a character string x ∈ C, label unification of x in S is
a transformation of S into system S′ that is behaviorally equivalent to S but
in which every occurrence of x is guaranteed to be triggered by a dedicated
transition. Fig. 7 shows the result of performing label unification for labels a′

and a′′ in the system in Fig. 4(a). The fresh elements introduced during the
unification are highlighted in gray, while the fresh arcs, in addition, are depicted
using the dashed lines. Unlike in the system in Fig. 4(a), transitions with labels
a′ and a′′ cannot occur in executions of the system in Fig. 7. In the transformed

36

a'

a''

b

c

d

ea

t7 t8

t9 t10

t^
p1 p2

p3

p5

p4

p6

p7

t1

t2

t3

t4

t5

t6
p8

p9

p10

p11

p12

p13

Fig. 7: The result of label unification of labels {a,a′} in the system in Fig. 4(a).

system, tokens from the input places of the “forbidden” transitions t1 and t2 get
rerouted to enable the fresh transition t̂ that has label a; transition t̂ is called
the solitary transition for labels a′ and a′′. By unify(S,X) = (S′, t̂), X ∈ ℘≥1(C),
we denote the result of the label unification of X in S, where S′ is the resulting
system with the solitary transition t̂ for labels in X. By definition, the order of
applying different label unifications has no impact on the resulting system.

Finally, the predicates over PQL tasks are defined as follows.

Definition 5.6 (Predicates over PQL tasks).
Let S ∶= (P,T,F, λ,M) be a workflow system and let X,Y ∈ ℘≥1(C) be two
non-empty sets of non-empty character strings.

○ X can occur in S, denoted by canOccur(S,X), iff it holds that canOccur(S′, x),
where unify(S,X) = (S′, x).

○ X always occurs in S, denoted by alwaysOccurs(S,X), iff it holds that
alwaysOccurs(S′, x), where unify(S,X) = (S′, x).

○ X can conflict with Y in S, denoted by canConflict(S,X,Y), iff it holds that
canConflict(S′′, x, y), where unify(S,X) = (S′, x) and unify(S′, Y) = (S′′, y).

○ X and Y can co-occur in S, denoted by canCooccur(S,X,Y), iff it holds that
canCooccur(S′′, x, y), where unify(S,X) = (S′, x) and unify(S′, Y) = (S′′, y).

○ X and Y are in conflict in S, denoted by conflict(S,X,Y), iff it holds that
conflict(S′′, x, y), where unify(S,X) = (S′, x) and unify(S′, Y) = (S′′, y).

○ X and Y co-occur in S, denoted by cooccur(S,X,Y), iff it holds that
cooccur(S′′, x, y), where unify(S,X) = (S′, x) and unify(S′, Y) = (S′′, y).

○ X and Y are total causal in S, denoted by totalCausal(S,X,Y), iff it holds that
totalCausal(S′′, x, y), where unify(S,X) = (S′, x) and unify(S′, Y) = (S′′, y).

○ X and Y are total concurrent in S, denoted by totalConcurrent(S,X,Y),
iff it holds that totalConcurrent(S′′, x, y), where unify(S,X) = (S′, x) and
unify(S′, Y) = (S′′, y). ⌟

Using predicates over PQL tasks instead of strings, one can verify, for example,
that alwaysOccurs(S,{a′,a′′}), where S is the system in Fig. 4(a), holds true.
Thus, the exploratory query “SELECT * FROM * WHERE AlwaysOccurs(∼a);”
should retrieve the system in Fig. 4(a), given that ∼a evaluates to {a′,a′′}.

37

5.5.2. Computations

Definition 5.6 specifies the eight selected predicates over PQL tasks in terms
of the corresponding predicates over transitions. Techniques for computing
the canConflict , canCooccur , and totalCausal predicates are available [20]. Us-
ing canConflict and canCooccur , one can compute the conflict and cooccur
predicates. Next, we propose techniques that given a sound workflow system
S ∶= (P,T,F, λ,M) compute whether t ∈ T can occur in S, t ∈ T always occurs
in S, and t1 ∈ T and t2 ∈ T are total concurrent in S.

Computations of predicates are performed on systems that may result from
label unifications, refer to Section 5.5.1. A label unification in a sound workflow
system often leads to a system that is not even a workflow system due to the
introduction of dead transitions, where a dead transition is a transition that is
not part of any occurrence sequence of the system; for example, transitions t1
and t2 in Fig. 7 are dead. Dead transitions are kept in the resulting systems as
they may be required to perform subsequent label unifications. However, once all
the unifications are applied, dead transitions can be removed to result in a sound
workflow system; this trivially follows from the definition of label unification.
Thus, in what follows, we hold discussions for (sound) workflow systems.

Can occur. A transition t ∈ T can occur in a workflow system S ∶= (P,T,F, λ,M)
iff there exists an execution σ of S such that t ∈ σ. One can check whether a
transition can occur in a workflow system by solving a reachability problem
on a transformed version of the system. Given a system and a marking, the
reachability problem consists of deciding if an occurrence sequence of the system
leads to the marking. The reachability problem is decidable [22].

Lemma 5.7 (Can occur transition).
Let S ∶= (P,T,F, λ,M) be a workflow system with the sink place o ∈ P . A
transition t ∈ T can occur in S iff there is an occurrence sequence σ of S′ ∶= (P ∪
{p′}, T ∪{t′}, F ∪{(p′, t′)}∪{(p, t′)∣p ∈ ●t}∪{(t′, p)∣p ∈ t●}, λ∪{(t′, ϵ)},M⊎[p′]),
where p′ /∈ P and t′ /∈ T are a fresh place and a fresh transition, respectively, such
that t′ is an element of σ, i.e., t′ ∈ σ, and σ leads to [o]. ⌟

The proof follows from the construction of S′. If t can occur in S, then there
is an execution γ of S that contains t at some position j of γ. A sequence of
transitions obtained from γ by replacing t at position j with t′ is an occurrence
sequence of S′ that leads to [o]. Let σ be an occurrence sequence of S′ that
leads to [o] and t′ ∈ σ. Then, the sequence obtained from σ by replacing t′ with
t and keeping the order of the other elements is an execution of S.

Always occurs. A transition t ∈ T always occurs in a sound workflow system
S ∶= (P,T,F, λ,M) iff for every execution σ of S it holds that t ∈ σ. Again, one
can check whether a transition always occurs in a sound workflow system by
solving a reachability problem on a transformed version of the system.

Lemma 5.8 (Always occurs transition).
Let S ∶= (P,T,F, λ,M) be a workflow system with the sink place o ∈ P . A
transition t ∈ T always occurs in S iff there is no occurrence sequence σ of

38

S′ ∶= (P ∪ {p′}, T,F ∪ {(p′, t)}, λ,M ⊎ [p′]), where p′ /∈ P is a fresh place, that
leads to [p′, o]. ⌟

The proof, again, follows from the construction of S′. If t always occurs in S,
then every execution of S contains t. Let γ be an execution of S without t, then
γ is an occurrence sequence of S′ that leads to [p′, o]. Let σ be an occurrence
sequence of S′ that leads to [p′, o]. Then, σ is an execution of S without t.

Total concurrent. Let S ∶= (P,T,F, λ,M) be a workflow system. By ΞS(t1, t2),
where t1, t2 ∈ T , we denote the set {π ∈ ΠS ∣∃ e1, e2 ∈ Eπ ∶ ρπ(e1) = t1 ∧ ρπ(e2) =
t2}, i.e., the set of all processes of S that contain events that describe the
occurrences of transitions t1 and t2. Transitions t1 ∈ T and t2 ∈ T are total con-
current in a sound workflow system S ∶= (P,T,F, λ,M) iff ∀π ∈ ΞS(t1, t2) ∀ e1 ∈
Eπ ∀ e2 ∈ Eπ ∶ (e1 ≠ e2 ∧ ρπ(e1) = t1 ∧ ρπ(e2) = t2) ⇒ e1 ∣∣π e2.

Let U ∶= (B,E,G, ρ) be a complete prefix of the unfolding of a system
S ∶= (P,T,F, λ,M). Then, it holds that path(U, e1, e2) iff (e1, e2) ∈ G+, or
(e2, e1) ∈ G+, or there exists a sequence of cutoffs c ∈ cutoffs(U)∗ such that (i)
∃ b ∈ Cut(⌈c1⌉) ∶ (e1, b) ∈ G+, (ii) ∃ b ∈ Cut(⌈corr(c∣c∣)⌉) ∶ (b, e2) ∈ G+, and (iii)
∀ i ∈ [1..(∣c∣ − 1)]∃ b1 ∈ Cut(⌈corr(ci)⌉)∃ b2 ∈ Cut(⌈ci+1⌉) ∶ (b1, b2) ∈ G∗.

Lemma 5.9 (Total concurrent transitions).
Let S ∶= (P,T,F, λ,M) be a sound workflow system. Let U ∶= (B,E,G, ρ) be a
complete prefix of the unfolding of S. Transitions t1, t2 ∈ T are total concurrent
in S iff ∀e1 ∈ E ∀e2 ∈ E ∶ (e1 ≠ e2 ∧ ρ(e1) = t1 ∧ ρ(e2) = t2) ⇒ ¬ path(U, e1, e2). ⌟

Let us assume that t1 and t2 are total concurrent in S and there exist two
distinct events e1 and e2 that describe occurrences of t1 and t2, respectively,
such that path(U, e1, e2). Then, there is a process in ΞS(t1, t2) that contains
two distinct causal events that refer to t1 and t2. This follows immediately from
the definition of a complete prefix of the unfolding, cf. [25], and the fact that
every occurrence sequence of S can be extended to an execution. If for every
two distinct events e1 and e2 that describe occurrences of t1 and t2 it holds
that ¬path(U, e1, e2), then t1 and t2 are total concurrent in S, as according to
the definition of a complete prefix of the unfolding there exists no process in
ΞS(t1, t2) that evidences that some occurrences of t1 and t2 are causal.

Note that one can always construct a complete prefix of the unfolding of
a bounded system [25], i.e., a system with a finite number of reachable states,
while a sound workflow system is guaranteed to be bounded [35]. Using the
prefix in Fig. 5(b) and Lemma 5.9, one can verify whether two given transitions
are total concurrent in the system S in Fig. 5(a). For example, transitions t3
and t5 are total concurrent in S. Transitions t3 and t6 are not total concurrent
in S because of events e3 and e′6 and the fact that (e3, e′6) ∈ G+. Transitions t9
and t11 are also not total concurrent in S because of events e9 and e11 and the
sequence of cutoff events ⟨e′7⟩; note that (e9, b′9) ∈ G+ and (b9, e11) ∈ G+.

5.6. Example Queries

To exemplify PQL, we use an example process repository consisting of ten
process models sourced from the SAP R/3 reference model [5] and Polyvyanyy’s

39

Ph.D. thesis [15] and depicted in BPMN in Fig. 8. For simplicity, the models in
Fig. 8 use alphabet letters as abstract task labels. In addition, ID, version, date
created, and author attribute is shown in the text annotation under each model.
Note that model 9 in the figure Fig. 8 is the model from Fig. 2.

This repository can be formalized as the (S,A,L, val , loc,≾) tuple, see Defini-
tion 5.1, where S is the set of Petri net systems {s1, . . . , s10}, si, i ∈ {1..10}, where
si is obtained by translating model i from BPMN to Petri nets [33], A ∶={ID, Ver-
sion, Date, Author}, L ∶= {/, /Ten-Models-BPMN, /SAP-R3-EPC-Repo}, val ∶=
{(s1, ID, 1), (s1, Version, 1.0), (s1, Date, 01-June-2017), . . .}, loc ∶= ∪i∈{1..10}{(si,
/Ten-Models-BPMN)}, and ≾ is such that (l, l) ∈ ≾ for every l ∈ L, and it holds
that (/Ten-Models-BPMN, /) ∈ ≾ and (/SAP-R3-EPC-Repo, /) ∈ ≾.

All models in the repository are sound and have various structural character-
istics. Models 1 to 5 are acyclic, while models 6 to 10 contain cycles. Models 1,
2, 6, and 10 are well-structured, where a model is well-structured if and only if
every node with multiple outgoing arcs (a split) has a corresponding node with
multiple incoming arcs (a join), and vice versa, such that the set of nodes between
the split and the join induces a Single-Entry-Single-Exit component [63] [15].
Models 3, 4, 5, 7, 8, and 9 are unstructured. Model 7, 8, and 9 can be mapped
to well-structured models. For example, model 10 is equivalent to model 9 and
is well-structured. Note that models 3 to 5 are inherently unstructured. That is,
if the concurrency relations between process tasks must be preserved, they do
not have equivalent well-structured representations [15].

Ten sample PQL queries are listed below:

Q1. SELECT "Author" FROM "/Ten-Models-BPMN"

WHERE CanOccur("D") AND Conflict("D","E");

Q2. SELECT "Version" FROM "/Ten-Models-BPMN"

WHERE AlwaysOccurs("C") OR Cooccur("B","C");

Q3. SELECT "Date" FROM "/Ten-Models-BPMN"

WHERE (CanOccur("G") AND (NOT Conflict("E","G"))) OR

(TotalConcurrent("C","D") AND AlwaysOccurs("D"));

Q4. SELECT "Author","Version" FROM "/Ten-Models-BPMN"

WHERE CanOccur({"F","G"},ALL) AND AlwaysOccurs({"F","G"},ANY);
Q5. SELECT "Version","Date" FROM "/Ten-Models-BPMN"

WHERE Cooccur("B",{"C","D"},ALL) AND TotalConcurrent("B",{"C","D"},ANY);
Q6. SELECT "Version","Author" FROM "/Ten-Models-BPMN"

WHERE Conflict({"A","B"},{"E","F"},ANY) OR

(Cooccur({"A","B"},{"E","F"},EACH) AND

TotalCausal({"A","B"},{"E","F"},ALL));
Q7. SELECT "Date","Author" FROM "/Ten-Models-BPMN"

WHERE "C" IN (GetTasksAlwaysOccurs({"C"}) UNION

GetTasksTotalCausal({"C"},{"B","D"},ALL));
Q8. SELECT "Date","Version" FROM "/Ten-Models-BPMN"

WHERE "G" IN (GetTasksCanOccur({"G"}) INTERSECT

GetTasksConflict({"G"},{"D","E","F"},ANY));
Q9. SELECT "Version","Date","Author" FROM "/Ten-Models-BPMN"

40

Q3

Q3Q9

Q3Q6

C

B

e

D

E

F

s
A

① ②

B

A

s e

④

E

F

C

D

③

Q1 Q2 Q3 Q4 Q5 Q9 Q3 Q4 Q5 Q9

C

B

s e

D

E FA

A

s

B

C

D

e

E

F

Q1 Q2 Q3 Q4 Q5 Q7 Q9 Q10Q8 Q1 Q2 Q4 Q5 Q6 Q7 Q9 Q10Q8

s e
A

B F

EC

D

⑤

B

A

e

E

F
s

⑥

D

C G

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q10Q8 Q1 Q2 Q4 Q5 Q6 Q7 Q9 Q10Q8

es
A

B C

D

E

G

F

es
B

C

F

A E

D G

⑦ ⑧

⑨ ⑩

Q1 Q2 Q4 Q5 Q6 Q7 Q9 Q10Q8 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q9 Q10Q8

s e
A

B

C

D

E

F

G

s
B D

C F

D

E
e

A

E

G

Q6 Q7 Q8 Q10 Q6 Q7 Q10Q1 Q2 Q8

Q3Q1 Q2 Q4 Q5 Q6 Q7 Q9 Q10Q8 Q3Q1 Q2 Q4 Q5 Q6 Q7 Q9 Q10Q8

ID: 1 | Version: 1.0 | Date: 01-June-2017 | Author: SAP ID: 2 | Version: 1.1 | Date: 31-May-2017 | Author: SAP

ID: 3 | Version: 2.0 | Date: 03-June-2017 | Author: Polyvyanyy ID: 4 | Version: 1.2 | Date: 31-May-2017 | Author: SAP

ID: 5 | Version: 1.2 | Date: 03-June-2017 | Author: Polyvyanyy ID: 6 | Version: 2.0 | Date: 01-June-2017 | Author: SAP

ID: 7 | Version: 1.2 | Date: 01-June-2017 | Author: SAP ID: 8 | Version: 2.0 | Date: 03-June-2017 | Author: SAP

ID: 9 | Version: 1.2 | Date: 05-June-2017 | Author: Polyvyanyy ID: 10 | Version: 2.0 | Date: 05-June-2017 | Author: Polyvyanyy

Fig. 8: A repository of ten process models captured in BPMN with their attributes
information and results of evaluation of ten sample queries over each of these models.

41

WHERE GetTasksCooccur({"A","B","C"},{"D","E"},ANY) NOT EQUALS

GetTasksTotalConcurrent({"A","B","C"},{"D","E"},ANY);
Q10. SELECT * FROM "/Ten-Models-BPMN" WHERE ({"A","B","E","F"} EXCEPT

GetTasksCooccur({"A","B","E","F"},{"C","D"},ALL)) OVERLAPS WITH

GetTasksConflict({"A","B","E","F"},{"C","D"},ANY);

These queries exploit the various features of the PQL language, including atomic
behavioral predicates, predicate macros, logical operations, construction of
task sets using predicates, set operations, and set comparison operations. We
executed the queries on the repository of ten models from Fig. 8. Each query
was evaluated over each model according to the semantics of PQL defined in
Sections 5.4 and 5.5. Each evaluation result indicates whether the model satisfies
the condition specified in the WHERE clause of the query. In Fig. 8, this is depicted
by a query name being ticked (satisfies) or not ticked (does not satisfy) under
each model. Since models 9 and 10 are behaviorally equivalent, every query
evaluation over these models yields the same result.

Table 6 shows the results of the queries. For each query, only the corre-
sponding systems (and their attributes) that satisfy the WHERE condition of the
query are retrieved. For example, Query Q1 is designed to retrieve those process
models where (i) task labeled "D" (task D for short) occurs in at least one process
instance (CanOccur("D")) and (ii) there is no process instance in which tasks D
and E both occur (Conflict("D","E")). The first condition holds in all models
in Fig. 8, while the second condition holds in models 1 and 5 only. For example,
in model 8, although tasks D and E are on two exclusive branches (subsequent
to task B), both tasks may occur in one process instance since task D is part
of a cycle. Another interesting example concerns query Q3 and its condition
TotalConcurrent("C","D"). This condition holds for a process model if and
only if for every instance in which tasks C and D both occur, every occurrence of
task C can be executed at the same time with every occurrence of task D. For
example, as model 3 is unstructured, it is hard to evaluate this condition without
an in-depth understanding of the processes the model describes.

6. Implementation

The querying method described in Section 5 has been implemented and is
publicly available.5 The implementation exhibits a well-defined application pro-
gramming interface (API) to facilitate integration with other software products.
This API can be accessed via command-line interfaces (CLIs) of two utilities:
the PQL bot and the PQL tool. We refer to them as PQL Tools. Conjointly,
they implement the PQL environment. The PQL bot is used to prepare models
for querying, while the PQL tool executes PQL queries over the indexed models.

The PQL environment is implemented using Java, ANTLR, and MySQL.
Java is chosen due to its “architecture-neutral and portable” principle. As a

5https://github.com/processquerying/PQL.git

42

Table 6: Results of ten sample queries over the repository of ten models from Fig. 8.

Query Query result

Q1 {(s1,{(Author, SAP)}), (s5,{(Author, Polyvyanyy)})}
Q2 {(s1,{(Version, 1.0)}), (s4,{(Version, 1.2)}), (s6,{(Version, 2.0)}),

(s7,{(Version, 1.2)}), (s9,{(Version, 1.2)}), (s10,{(Version, 2.0)})}
Q3 {(s4,{(Date, 31-May-2017)}), (s6, {(Date, 01-June-2017)}),

(s7,{(Date, 01-June-2017)}), (s9,{(Date, 05-June-2017)}),
(s10,{(Date, 05-June-2017)})}

Q4 {(s6,{(Author, SAP), (Version, 2.0)}), (s9,{(Author, Polyvyanyy),
(Version, 1.2)}), (s10,{(Author, Polyvyanyy), (Version, 2.0)})}

Q5 {(s4,{(Version, 1.2), (Date, 31-May-2017)}), (s9,{(Version, 1.2),
(Date, 05-June-2017)}), (s10,{(Version, 2.0), (Date, 05-June-2017)})}

Q6 {(s1,{(Version, 1.0), (Author, SAP)}), (s2,{(Version, 1.1), (Author, SAP)}),
(s3,{(Version, 2.0), (Author, Polyvyanyy)})}

Q7 {(s1,{(Date, 01-June-2017), (Author, SAP)}), (s2,{(Date, 31-May-2017),
(Author, SAP)}), (s3,{(Date, 03-June-2017), (Author, Polyvyanyy)}),
(s4,{(Date, 31-May-2017), (Author, SAP)}), (s7,{(Date, 01-June-2017),

(Author, SAP)}), (s9,{(Date, 05-June-2017), (Author, Polyvyanyy)}),
(s10,{(Date, 05-June-2017), (Author, Polyvyanyy)})}

Q8 {(s8, {(Date, 03-June-2017), (Version, 2.0)})}
Q9 {(s3,{(Version, 2.0), (Date, 03-June-2017), (Author, Polyvyanyy)}),

(s4,{(Version, 1.2), (Date, 31-May-2017), (Author, SAP)}), (s5,
{(Version, 1.2), (Date, 03-June-2017), (Author, Polyvyanyy)}), (s6,
{(Version, 2.0), (Date, 01-June-2017), (Author, SAP)}), (s7,{(Version,
1.2), (Date, 01-June-2017), (Author, SAP)}), (s9,{(Version, 1.2),
(Date, 05-June-2017), (Author, Polyvyanyy)}), (s10,{(Version, 2.0),
(Date, 05-June-2017), (Author, Polyvyanyy)})}

Q10 {(s1,{(ID, 1), (Version, 1.0), (Date, 01-June-2017), (Author, SAP)}),
(s2,{(ID, 2), (Version, 1.1), (Date, 31-May-2017), (Author, SAP)}),
(s3,{(ID, 3), (Version, 2.0), (Date, 03-June-2017), (Author, Polyvyanyy)}),
(s5,{(ID, 5), (Version, 1.2), (Date, 03-June-2017), (Author, Polyvyanyy)}),
(s6,{(ID, 6), (Version, 2.0), (Date, 01-June-2017), (Author, SAP)})}

result, the environment can be deployed on various platforms running different
operating systems. The PQL tool uses an ANTLR [64] generated parser that
can build and walk syntax trees of PQL queries. Given a context-free grammar
expressed using extended Backus-Naur Form [65] as input, ANTLR generates
the Java code of the grammar parser. The PQL grammar, which incorporates its
abstract syntax and concrete syntax captured using ANTLR notation is listed
in Appendix C. The PQL tool relies on a special index of behavioral relations,
a data structure that improves the computation speed of behavioral relations at
the cost of time for its construction and space for its storage. The tool uses this
index at runtime to avoid having to compute PQL predicates every time a new
query is issued. The index is stored in a MySQL relational database system.

PQL utilities can be configured to use a particular model checking tool for
computing behavioral predicates, an information retrieval engine for assessment
of label similarities, label similarity thresholds, the maximum number of threads
used by the PQL tool when executing queries, the time that PQL bots sleep,
i.e., stay idle, between two subsequent indexing jobs, and the maximal allowed
time to index a single model. The PQL environment can be configured to use one

43

of the three integrated information retrieval engines for scoring label similarities.
These are Apache Lucene6, Themis-IR [66], and the label similarity scoring
approach based on the Levenshtein distance [67].

The PQL Bot. The PQL bot systematically indexes models stored by the
PQL tool. Once a model is indexed, it can be matched to a query. One can
start multiple PQL bot instances simultaneously to index multiple models in
parallel. To construct an index, a PQL bot instance computes and stores all
the behavioral predicates over all the PQL tasks of the model. A call to a PQL
indexing routine takes as input a workflow system described in the Petri Net
Markup Language (PNML) format [68].

The computation of a PQL predicate reduces to one of these three problems:
the reachability problem [22], the covering problem [23], or the structural analysis
over a complete prefix [24, 25] of the unfolding [26] of the system; refer to
Section 5.5 and [20] for details. The PQL bot uses the LoLA tool version 2.0 [69]
for solving the reachability and covering problems.7 The PQL bot relies on
the implementation of the algorithm by Esparza et al. [25] to construct finite
complete prefixes of unfoldings available as part of the jBPT initiative [70].

Appendix E lists the CLI commands of the PQL bot and its sample output.

The PQL Tool. The PQL tool can store, index, delete, and query process
models. The user can specify the number of computation threads to use when
evaluating PQL queries. As a result of executing a PQL query, the tool returns
a collection of matching models and PQL tasks (sets of activity labels) that have
triggered the retrieval of the models. We refer the reader to Appendix E for the
list of CLI commands of the PQL tool and its sample output.

7. Evaluation

Using the implementation presented in Section 6, we conducted experiments
to assess the performance of PQL. Section 7.1 introduces the datasets used in the
evaluation. Next, Section 7.2 and Section 7.3 discuss the evaluation of indexing
and querying performance, respectively. The experiments were performed on a
computer with 8GB of RAM and 3.4GHz quad-core Intel Core CPU (8 logical
processors), running Windows 7 and JVM 1.7. Finally, in Appendix F, the
reader can find additional discussions of the results of our experiments.

7.1. Datasets

Process models. The study was conducted using 493 industrial and 1,000
synthetic process models.8 All the 1,493 models are sound workflow systems. We
obtained the industrial models from the SAP R/3 Reference Model [5], a collection
of 604 EPCs in various domains such as sales, production, and procurement

6https://lucene.apache.org/
7http://service-technology.org/lola/
8The models are available via https://doi.org/10.26188/21937259.

44

used to customize the SAP R/3 ERP system. We converted the EPCs to Petri
net systems and completed them to workflow systems. Next, we filtered out
the unsound systems, resulting in 493 sound models. We complemented this
collection of real-life models with a collection of synthetic workflow systems,
which we generated using the tool described by Yan et al. [71]. This tool takes a
seed process model collection and generates models that share similar structural
and label characteristics to the seed. We used the 604 EPCs in the SAP R/3
collection as the seed, with a multiplier of 50, to generate 30,200 artificial EPCs.
We converted these EPCs into workflow systems and filtered out the unsound
models, leading to 16,769 sound workflow systems. Finally, from these 16,769
systems, we randomly selected 1,000 systems, each with more than 10 nodes.

Table 7: Structural characteristics of the industrial process models.

#P #T #F #OT #XS #XJ #AS #AJ #PG #B #R

Average 17.85 15.91 35.7 8.57 0.64 0.65 1.13 1.13 5.73 1.78 0.002

Minimum 4 3 6 2 0 0 0 0 1 0 0

Maximum 74 86 180 35 6 6 6 6 31 9 1

Std. Dev. 12.73 11.89 27.61 6.21 0.89 0.91 1.21 1.22 4.93 1.66 0.05

Tables 7 and 8 provide statistics on the number of places (#P), transitions
(#T), flow arcs (#F), observable transitions (#OT), XOR-splits (#XS), XOR-
joins (#XJ), AND-splits (#AS), AND-joins (#AJ), polygons (#PG), bonds
(#B), and rigids (#R) in the models of the two collections. These are common
characteristics for comparing the structural properties of model collections [71];
see Appendix F for details. The tables demonstrate that industrial and synthetic
models have similar structural characteristics.

Table 8: Structural characteristics of the synthetic process models.

#P #T #F #OT #XS #XJ #AS #AJ #PG #B #R

Average 16.63 13.52 32.4 10.95 0.45 0.43 1.26 1.22 6.192 1.609 0.116

Minimum 5 5 10 3 0 0 0 0 1 0 0

Maximum 86 84 190 67 8 5 7 6 39 8 2

Std. Dev. 11.14 9.01 23.08 7.48 0.85 0.77 1.04 0.98 4.99 1.15 0.34

Queries. We designed 150 PQL query templates. Each template is a PQL query
with placeholders for activity labels. During the experiments, the placeholders
were instantiated with random labels. The query templates were developed
to exploit the various features of the PQL grammar. According to the PQL
features they support, the query templates were divided into three categories
and further subdivided into groups and subgroups. The first category contains
six query templates capturing individual atomic behavioral predicates. The
second category contains 50 query templates that result from combining atomic
predicates via logical operations. Finally, the third category contains 94 query
templates that use predicate macros and construction of task sets using predicates
with set operations and comparisons. Table 9 lists all the PQL query categories,
groups, subgroups, and provides numbers of query templates accordingly (see
column “# Templates”). For details on the query templates, refer to Appendix
F, while Appendix G lists all the 150 PQL query templates.

45

Table 9: Categories, Groups, and Subgroups of PQL query templates.

Category.Group.Subgroup Name # Templates

1.a Unary atomic predicates 2

1.b Binary atomic predicates 4

2.a.1 Negations of predicates (Same) 6

2.a.2 Conjunctions of predicates (Same) 18

2.a.3 Disjunctions of predicates (Same) 18

2.b.1 Conjunctions of predicates (Mixed) 3

2.b.2 Disjunctions of predicates (Mixed) 3

2.b.3 Combinations of logical operations 2

3.a.1 Unary predicate macros 12

3.a.2 Binary predicate macros (Task-Set) 24

3.a.3 Binary predicate macros (Set-Set) 36

3.b.1 Constructions via unary predicates 2

3.b.2 Constructions via binary predicates 8

3.b.3 Constructions with set operations 5

3.b.4 Constructions with set comparisons 7

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8

In
d

e
x

in
g

 t
im

e
 (

se
co

n
d

s)

Number of bots

25%

50%

75%

100%

(a)

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8

In
d

e
x

in
g

 t
im

e
 (

se
co

n
d

s)

Number of bots

25%

50%

75%

100%

(b)

Fig. 9: Impact of PQL bots on indexing time: (a) industrial and (b) synthetic models.

7.2. Indexing Performance

We conducted four experiments to measure the performance of PQL bots and
the impact of different factors on indexing time. In what follows, for each of these
four experiments, we detail its setup and discuss the obtained measurements.

Experiment 1.1: Impact of PQL bots on indexing time. The goal of this
experiment was to measure the performance of PQL bots. We measured the
time of indexing the industrial and synthetic models using different numbers of
bots (from 1 to 8). Each indexing exercise was repeated three times, and we
recorded the average indexing times of the three runs. In all the runs, the bots
were configured to index the label similarity threshold of 1.0. The procedure
was repeated for different parts of the process model collections, i.e., using 25%,
50%, 75%, and 100% of models in each collection. Models for each part of each
process model collection were selected randomly.

Fig. 9 plots the indexing times (in seconds) for different parts of process
model collections against different numbers of PQL bots for (a) the industrial
and (b) synthetic models. The two plots demonstrate that adding bots decreases
indexing time, though the decrease in indexing time gets less pronounced with

46

R² = 0.9915

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40

In
d

e
x

in
g

 t
im

e
 (

se
co

n
d

s)

Model size

(a)

R² = 0.99

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70

In
d

e
x

in
g

 t
im

e
 (

se
co

n
d

s)

Model size

(b)

Fig. 10: Impact of model size on indexing time: (a) industrial and (b) synthetic models.

the increase in the number of bots. This experiment confirmed that the indexing
time grows linearly with the size of a process model collection.

Experiment 1.2: Impact of model size on indexing time. This experiment
aimed to assess the impact of the size of a model on its indexing time. The two
model collections were indexed three times (using one bot), and for each model,
we recorded the average indexing time of the three runs. The bot was configured
to index the label similarity threshold of 1.0.

Fig. 10 plots the indexing times (in seconds) against different sizes of workflow
systems for (a) the industrial and (b) synthetic models. In this experiment, the
size of a workflow system is measured as the number of its observable transitions.
The average indexing time of a model in the industrial collection is 50.3 seconds,
with a minimum of 4.0 seconds (for a model with 2 observable transitions) and
a maximum of 858.7 seconds (for a model with 25 observable transitions). We
noticed that 95% of models in the industrial collection were indexed in less than
200 seconds. The average indexing time of a model in the synthetic collection
is 74.0 seconds, with a minimum of 6.3 seconds (for a model with 3 observable
transitions) and a maximum of 2,465.7 seconds (for a model with 67 observable
transitions). More than 95% of models in the synthetic collection were indexed
in less than 250 seconds. In general, the indexing times demonstrated polynomial
dependency on the sizes of the indexed models.

Experiment 1.3: Impact of label similarity threshold on indexing time.
This experiment aimed to assess the impact of different label similarity thresholds
on the average time required to index a model. In this experiment, we varied
the label similarity threshold (0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) used to index the
models. Both process model collections were indexed with one bot three times
(for each similarity threshold), and average indexing times for the three runs
were recorded. The Lucene-VSM label comparison method was used in all the
runs. The average indexing times of an industrial model for the label similarity
thresholds 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 are 49.73, 50.3, 50.44, 50.48, 50.3, and
50.31 seconds, respectively.The measured average indexing times of a synthetic
model for the label similarity thresholds 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 are 74.53,
74.63, 74.62, 74.57, 74.61, and 74.48 seconds, respectively.

There is no strong relation between the label similarity thresholds and the
average indexing times. We conclude that the impact of different label similarity

47

thresholds on indexing times is negligible. This conclusion can be explained
by the small number of unique labels in both collections (2,278 unique labels
in the industrial models and 10,473 unique labels in the synthetic models) and
the fact that the labels are short character strings (on average 4.84 and 6.08
words in a label of an industrial and a synthetic model, respectively), whereas
modern information retrieval engines are known to be efficient on collections
that comprise millions of natural language documents of much larger sizes [72].

Experiment 1.4: Impact of index size on indexing time. This experiment
aimed to measure the impact of index size on the average time required to index
a model. To this end, we randomly split the industrial collection into four sets of
(approximately) the same size (Sets 1–4). Each set was indexed four times: once
when the index was empty, and then after 25%, 50%, and 75% of the collection
was indexed. The index size does not significantly affect the average indexing
time. We noticed a negligible increase in the indexing time with the growth of
the index size. This observation can be explained by the fact that the introduced
overhead is due to write operations on the PQL index, which modern database
management systems can efficiently handle.

7.3. Querying Performance

We conducted three experiments to assess the performance of executing
different types of PQL queries. The queries were generated from the templates
discussed in Section 7.1. To conduct the evaluation, for each model collection
and template, we generated three queries by populating the template with labels
randomly selected from all the labels in the collection.

Experiment 2.1: Impact of query threads on querying time. This
experiment measured the impact of the number of query threads and the size
of a model collection on the querying time. We varied the number of query
threads (from 1 to 8) and executed all the generated queries on different parts
of the collections (25%, 50%, 75%, and 100% of models in each collection). For
each part of each collection, models were randomly selected three times, and
the average querying times for the three runs were recorded. The models were
indexed using the label similarity threshold of 1.0.

Fig. 11 plots the querying times (in seconds) for different parts of process
model collections against different numbers of query threads for (a) the indus-
trial and (b) synthetic models. It demonstrates that additional query threads
decrease querying time. As in Experiment 1.1, the gain in performance gets
less pronounced with the increase in the number of query threads. For example,
querying the industrial models with one thread took on average 8.259 seconds,
two threads managed to accomplish queries over these models in 6.109 seconds
(1.35 times faster than using one thread), while eight threads used 2.037 seconds
to execute a query over the whole collection (four times faster than with one
thread). A similar trend was observed for the synthetic models. The relation
between the querying times and the number of threads is best captured by power
functions with negative exponents. Also, the collected measurements reveal that
the querying time grows linearly with the size of a process model collection.

48

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

25%

50%

75%

100%

(a)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

25%

50%

75%

100%

(b)

Fig. 11: Impact of threads on querying time: (a) industrial and (b) synthetic models.

Experiment 2.2: Impact of query types on querying time. This ex-
periment aimed to assess the impact of different query types on querying time.
It uses the same setup as Experiment 2.1. In this experiment, we measured
querying times for different query groups discussed in Section 7.1.

Fig. 12 plots the average querying times for different model collection sizes
and different numbers of query threads. Figs. 12(a), 12(c), 12(e) and 12(g)
show the linear dependency between the number of models in a collection and
querying times for different query types, while Figs. 12(b), 12(d), 12(f), and 12(h)
demonstrate a trend that is similar to the one observed in Experiment 2.1. The
results confirm the feasibility of using PQL in industrial settings. With eight
query threads, the Category 1 queries were, on average, accomplished in 0.47
seconds for the industrial collection and 1.61 seconds for the synthetic collection.

Experiment 2.3: Impact of label similarity on querying time. This
experiment aimed to measure the impact of label similarity on querying time.
We repeated Experiment 2.1 with the following modifications: (i) the bots were
configured to index label similarity thresholds of 0.75 and 1.0, (ii) all the query
templates were augmented to include the “tilde” symbol immediately before
every activity label (thus, similar labels were considered during querying), and
(iii) the tool was configured to use the default label similarity threshold of 0.75.

We compared the observed querying times with the querying times obtained
in Experiment 2.1. For the industrial and synthetic models, the average querying
times (using one thread) are, respectively, 10.9% and 9.47% higher for queries
that account for similar labels. This small overhead can be explained by the
fact that the PQL tool indexes behavioral relations at the level of PQL tasks
and, thus, at runtime, the overhead is only due to the additional time required
to retrieve information on the indexed PQL tasks.

8. Related Work

Recently, we conducted a systematic literature review of the state-of-the-art
methods for querying process repositories [4]. As part of that study, we designed
a framework for developing process querying methods. The framework is an
abstract system in which components can be selectively replaced to result in a new
process querying method. According to this framework, PQL addresses querying
of formal process models using a query language with a formal semantics that

49

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

25 50 75 100

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Collection size (%)

1.a.1

1.b.1

2.a.1

2.a.2

2.a.3

2.b.1

2.b.2

2.b.3

Cat. 1

Cat. 2

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

1.a.1

1.b.1

2.a.1

2.a.2

2.a.3

2.b.1

2.b.2

2.b.3

Cat. 1

Cat. 2

(b)

0

5

10

15

20

25

25 50 75 100

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Collection size (%)

3.a.1

3.a.2

3.a.3

3.b.1

3.b.2

3.b.3

3.b.4

Cat. 3

(c)

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

3.a.1

3.a.2

3.a.3

3.b.1

3.b.2

3.b.3

3.b.4

Cat. 3

(d)

0

2

4

6

8

10

12

25 50 75 100

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Collection size (%)

1.a.1

1.b.1

2.a.1

2.a.2

2.a.3

2.b.1

2.b.2

2.b.3

Cat. 1

Cat. 2

(e)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

1.a.1

1.b.1

2.a.1

2.a.2

2.a.3

2.b.1

2.b.2

2.b.3

Cat. 1

Cat. 2

(f)

0

10

20

30

40

50

60

25 50 75 100

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Collection size (%)

3.a.1

3.a.2

3.a.3

3.b.1

3.b.2

3.b.3

3.b.4

Cat. 3

(g)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

3.a.1

3.a.2

3.a.3

3.b.1

3.b.2

3.b.3

3.b.4

Cat. 3

(h)

Fig. 12: The average querying times for different model collection sizes (a,c,e,g) and
different numbers of query threads (b,d,f,h); PQL queries in Categories 1 and 2 for the
industrial models (a,b) and synthetic models (e,f) and PQL queries in Category 3 for
the industrial models (c,d) and synthetic models (g,h).

50

implements the read querying intent, i.e., is designed to retrieve models from
repositories. Two recent surveys of process querying methods [12, 4] confirm
that query languages with these characteristics constitute a gap in the area of
process querying. In [73], we categorized and summarized the existing process
querying methods. According to that classification, two prominent existing
works for behavioral querying of process models that share similar characteristics
with PQL are the works on “Behavior Query Language” (BQL) [74] and “A
Process-model Query Language” (APQL) [28]. Next, we briefly review APQL
and BQL, summarize some important results on behavioral predicates, and
discuss several related techniques from the areas outside process querying.

Behavioral querying. PQL is inspired by our work on APQL and redesigns
APQL in many respects. PQL differs from APQL in that it is grounded in a
different and empirically justified collection of behavioral predicates, extends the
abstract syntax of APQL, proposes a concrete syntax, has an implementation
that demonstrates its feasibility, and operates on the level of observable behaviors,
i.e., incorporates mechanisms for interpreting two different tasks as such that
have the same meaning for the purpose of evaluating the queries. Compared
to BQL, PQL is rigorous since both the syntax and semantics of the language
are formally defined. BQL is grounded in three behavioral predicates. All these
predicates belong to the 4C spectrum and were included in our empirical study.
These three predicates are Conflict (called “exclude” in [74]), ExistCausal
(“precede”), and ExistConcurrent (“parallel with”), refer to Section 4.1 for
more details. As a result of our empirical evaluation, only one of these three
predicates, namely Conflict, was selected to be included in the set of eight
core PQL predicates. As to ExistCausal and ExistConcurrent, the stakehold-
ers have given their preference to “stronger” predicates of TotalCausal and
TotalConcurrent, which ensure that the respective behavioral relation holds
for all (rather than only for some) occurrences of the tasks. Finally, the funda-
mental difference between PQL and BQL is that BQL predicates are defined
over occurrences of tasks, while PQL predicates are defined over aggregations
(derived using quantification) over the occurrences of tasks.

Model Checking. Model checking studies problems that can verify properties
of process models [75, 76]. A model checking problem is a problem that, given
a formal specification of a property, usually captured using some specification
language, and a process model, answers whether the property holds in the model.
To solve a problem, model checking often proceeds by constructing an alternative
representation of the model that indicates whether the given property holds or not
in the model. Model checking techniques usually use temporal logics as property
specification languages, e.g., linear temporal logic (LTL) and computational tree
logic (CTL). Model checking techniques can be employed for process querying
to retrieve process models that fulfill a given property [77].

As recently demonstrated by Wolf [78], computations of most of the 4C
behavioral relations can be reduced, via non-trivial transformations that require
exponential space, to classical interleaving-based model checking problems. Only
one problem remains completely unsolved, whereas several problems were solved

51

in the absence of auto-concurrency. In fact, based on the results reported
in [20, 78], we know that all the predicates selected for inclusion into PQL,
refer to Section 4.3, can be reduced to model checking problems. However, one
cannot directly apply the proposed solutions for process querying. Note that
the proposed in [78] LTL and CTL properties for computing the 4C relations
are formulated over the transformed models and, hence, do not convey the
meanings of the properties to be computed, which makes them unsuitable for
user interpretations. Also, the performance of the approach proposed in [78]
has not been evaluated; note that model checking on infinite-state systems is
undecidable and is PSPACE-complete on finite-state systems [18]. Such an
evaluation, and development of new efficient techniques for computing the 4C
relations, may contribute to the development of PQL.

Behavioral predicates. Dwyer et al. [79] report the results of a survey
of property specifications (a.k.a. behavioral predicates) captured in temporal
logics, e.g., LTL or CTL. The authors collected and classified 555 properties,
most specified in LTL, from various domains, including hardware protocols,
communication protocols, avionics, operating systems, and database systems.
Interestingly, the authors conclude that “even with significant expertise, dealing
with the complexity of such a specification [a temporal logic property] can be
daunting” and suggest that often “complexity is addressed by the definition
and use of abstraction”. PQL implements such an abstraction. There are no
translations from PQL predicates to temporal logic properties over concepts of
the original process model; see above. However, it is easy to see that several
properties surveyed by Dwyer et al. [79] can be expressed as logical expressions
over the 4C relations. A comprehensive study of such translations is future work.

To the best of our knowledge, no existing works study the relevance of
behavioral predicates for querying (business) process models. Future empirical
studies will aim at gaining a better understanding of the suitability of behavioral
predicates for process querying, as per the process querying compromise between
decidable, efficiently computable, and suitable process querying methods [4].

Verification of software systems. In [80], the authors proposed FLAVERS—a
finite-state verification technique to analyze whether a concurrent software system
satisfies a given user-specified property. To perform the verification, FLAVERS
constructs an abstract representation of the system. This abstraction step comes
at the price of precision of the analysis results. In our work, we suggest using
PQL to query repositories of business process models. However, one can explore
PQL for querying, testing, and verifying software systems. Unlike FLAVERS,
PQL is precise, i.e., the result of every PQL query is free from false positive and
false negative errors. FLAVERS and PQL differ in how they interpret models of
analyzed models, according to the interleaving and noninterleaving semantics
of concurrent systems [81], respectively. Thus, PQL can be used to express
properties that address the potential simultaneous execution of instructions of
software systems.

In software engineering, well-established finite-state verification techniques,
like the methods based on classical model checking or the FLAVERS technique,

52

are used to inform the continuous improvement of processes [82, 83]. PQL can
enrich this repertoire of verification techniques for detecting errors in semantically
rich process models with user-interpretable and relevant properties.

Declarative process discovery. Process mining helps business analysts in
dealing with the complexities and uncertainties introduced by business processes.
It aims to discover, monitor, and improve processes observed in the real world
using the knowledge accumulated in event logs recorded by information sys-
tems [84]. An event log is a collection of traces, each comprising events executed
in a business process. Process discovery involves obtaining a good process model
that describes the behavior recorded in an event log. Declarative process discov-
ery aims to construct such process models as collections of declarative constraints
over possible executions of business activities. These declarative constraints are
often expressed as behavioral predicates, similar to those used in PQL.

MINERful is a declarative process discovery algorithm [85]. The algorithm
performs the statistical analysis of the input event log and then uses the derived
knowledge to compose the declarative constraints, which collectively describe
the traces recorded in the event log. In particular, MINERful discovers Declare
constraints [86], a repertoire of LTL templates. In [87], the authors propose
another algorithm capable of discovering Declare constraints from event logs
called UnconstrainedMiner. In that work, Declare templates are translated to
regular expressions to address the problem of LTL semantics over finite traces.

Declarative process discovery algorithms can target the discovery of the 4C
constraints, particularly the PQL predicates. This will allow overcoming two
limitations of the existing techniques: the inability to encode noninterleaving
semantics [81] and the lack of empirical justification of the discovered constraints.

9. Conclusion

This article presents a query language, called Process Query Language (PQL),
for retrieving process models. The language is grounded in empirically justified
behavioral predicates that can be used to check whether a model describes
executions of interest. To facilitate adoption, the language has an SQL-like
concrete syntax. PQL supports exploratory querying by searching models that
describe executions with activity labels similar to those specified in PQL queries.
The language has been implemented, and its runtime performance has been
evaluated using real-life and synthetic process model collections. The experiments
confirm the feasibility of computing PQL queries in close to real-time.

We acknowledge several limitations of this work that give rise to future
work. First, the expressiveness of PQL is limited by the basic predicates it
supports, a fundamental limitation of every query language based on behavioral
predicates [16]. Expressiveness can be increased by using execution templates
with wildcards [29], such as to express a search intent like “find all process
models that allow execution ⟨a,b,∗,b,b,∗,c,∗⟩” with wildcards representing any
sequence of tasks. Second, the design of PQL should be supported by further
empirical evidence. Such evidence includes exploring relations between desired

53

queries and PQL capabilities, evaluating how users specify complex queries, and
studying the usefulness of the exploratory search capabilities of the language.
Third, PQL considers control-flow in process models and not other perspectives,
like data-flow and resources. To broaden applicability, future versions of PQL can
support these perspectives. Fourth, PQL can be extended with functionality that
is auxiliary to behavioral querying, such as aggregate functions over retrieved
processes. PQL predicates operate over the global process scope, i.e., over
processes that represent completed model executions. Similar to some properties
surveyed by Dwyer et al. [79], PQL predicates can be generalized to operate
over other scopes, e.g., between given process conditions. Fifth, PQL can be
extended with manipulation statements, e.g., INSERT, DELETE, UPDATE, to allow
adding, deleting, and modifying executions supported by process models.

Another limitation of PQL is that queried process models must come from
the class of sound workflow systems, but in practice, process models may not be
sound. It is interesting to expand the applicability of PQL to unsound models.
Finally, despite the benefits of behavior-based querying, behavior conditions
that trigger a model match to a query may be complex. Different techniques for
explaining query results can be explored to address this challenge.

Acknowledgements. We thank Jan Recker for his contribution to the design
of the experiment for evaluating the practical relevance of using behavioral
predicates for querying process models.

References

[1] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede, J. Mendling,
From business process models to process-oriented software systems, ACM Trans.
Softw. Eng. Methodol. 19 (1) (2009) 2:1–2:37.

[2] M. Weske, Business Process Management: Concepts, Languages, Architectures,
3rd Edition, Springer, 2019.

[3] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers, Fundamentals of Business
Process Management, 2nd Edition, Springer, 2018.

[4] A. Polyvyanyy, C. Ouyang, A. Barros, W. M. P. van der Aalst, Process query-
ing: Enabling business intelligence through query-based process analytics, Decis.
Support Syst. 100 (2017) 41–56.

[5] T. Curran, G. Keller, A. Ladd, SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model, Prentice-Hall, Inc., 1998.

[6] D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, K. Wolf, Analysis on
demand: Instantaneous soundness checking of industrial business process models,
Data Knowl. Eng. 70 (5) (2011) 448–466.

[7] A. Polyvyanyy, S. Smirnov, M. Weske, Reducing complexity of large EPCs, in:
MobIS, Vol. P-141 of LNI, GI, 2008, pp. 195–207.

54

[8] M. La Rosa, M. Dumas, R. Uba, R. M. Dijkman, Business process model merging:
An approach to business process consolidation, ACM Trans. Softw. Eng. Methodol.
22 (2) (2013) 11:1–11:42.

[9] A. Polyvyanyy (Ed.), Process Querying Methods, Springer, 2022.

[10] C. Beeri, A. Eyal, S. Kamenkovich, T. Milo, Querying business processes with
BP-QL, in: VLDB, ACM, 2005, pp. 1255–1258.

[11] A. Awad, BPMN-Q: A language to query business processes, in: EMISA, Vol.
P-119 of LNI, GI, 2007, pp. 115–128.

[12] J. Wang, T. Jin, R. K. Wong, L. Wen, Querying business process model repositories:
A survey of current approaches and issues, World Wide Web 17 (3) (2014) 427–454.

[13] P. Barceló, L. Libkin, J. L. Reutter, Querying regular graph patterns, J. ACM
61 (1) (2014) 8:1–8:54.

[14] L. Libkin, W. Martens, D. Vrgoc, Querying graphs with data, J. ACM 63 (2)
(2016) 14:1–14:53.

[15] A. Polyvyanyy, Structuring process models, Ph.D. thesis, University of Potsdam
(2012).

[16] A. Polyvyanyy, A. Armas-Cervantes, M. Dumas, L. Garćıa-Bañuelos, On the
expressive power of behavioral profiles, Formal Aspects Comput. 28 (4) (2016)
597–613.

[17] A. Scheer, O. Thomas, O. Adam, Process modeling using event-driven process
chains, in: Process-Aware Information Systems, Wiley, 2005, pp. 119–145.

[18] J. Esparza, M. Nielsen, Decidability issues for Petri nets: A survey, Bull. EATCS
52 (1994) 244–262.

[19] J. Esparza, K. Heljanko, Unfoldings: A Partial-Order Approach to Model Checking,
Monographs in Theoretical Computer Science. An EATCS Series, Springer, 2008.

[20] A. Polyvyanyy, M. Weidlich, R. Conforti, M. La Rosa, A. H. M. ter Hofstede, The
4C spectrum of fundamental behavioral relations for concurrent systems, in: Petri
Nets, Vol. 8489 of LNCS, Springer, 2014, pp. 210–232.

[21] A. Polyvyanyy, Introduction to process querying, in: Process Querying Methods,
Springer, 2022, pp. 1–18.

[22] M. Hack, Decidability Questions for Petri Nets, Outstanding Dissertations in the
Computer Sciences, Garland Publishing, New York, 1975.

[23] C. Rackoff, The covering and boundedness problems for vector addition systems,
Theor. Comput. Sci. 6 (1978) 223–231.

[24] K. L. McMillan, Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits, in: Computer Aided Verification, Vol. 663 of
LNCS, Springer, 1992, pp. 164–177.

55

[25] J. Esparza, S. Römer, W. Vogler, An improvement of McMillan’s unfolding
algorithm, Formal Methods Syst. Des. 20 (3) (2002) 285–310.

[26] M. Nielsen, G. D. Plotkin, G. Winskel, Petri nets, event structures and domains,
part I, Theor. Comput. Sci. 13 (1981) 85–108.

[27] R. Lipton, The Reachability Problem Requires Exponential Space, Yale University,
Department of Computer Science, Research Report 62, New Haven, Connecticut,
1976.

[28] A. H. M. ter Hofstede, C. Ouyang, M. La Rosa, L. Song, J. Wang, A. Polyvyanyy,
APQL: A process-model query language, in: AP-BPM, Vol. 159 of LNBIP, Springer,
2013, pp. 23–38.

[29] A. Polyvyanyy, A. Pika, A. H. M. ter Hofstede, Scenario-based process querying
for compliance, reuse, and standardization, Inf. Syst. 93 (2020) 101563.

[30] W. M. P. van der Aalst, Formalization and verification of event-driven process
chains, Inf. Softw. Technol. 41 (10) (1999) 639–650.

[31] N. Lohmann, E. Verbeek, C. Ouyang, C. Stahl, Comparing and evaluating Petri
net semantics for BPEL, Int. J. Bus. Process. Integr. Manag. 4 (1) (2009) 60–73.

[32] H. M. W. Verbeek, W. M. P. van der Aalst, A. H. M. ter Hofstede, Verifying
workflows with cancellation regions and OR-joins: An approach based on relaxed
soundness and invariants, Comput. J. 50 (3) (2007) 294–314.

[33] R. M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business process
models in BPMN, Inf. Softw. Technol. 50 (12) (2008) 1281–1294.

[34] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies, Springer, 2013.

[35] W. M. P. van der Aalst, Verification of workflow nets, in: ICATPN, Vol. 1248 of
LNCS, Springer, 1997, pp. 407–426.

[36] B. F. van Dongen, M. H. Jansen-Vullers, H. M. W. Verbeek, W. M. P. van der
Aalst, Verification of the SAP reference models using EPC reduction, state-space
analysis, and invariants, Comput. Ind. 58 (6) (2007) 578–601.

[37] B. Kiepuszewski, A. H. M. ter Hofstede, W. M. P. van der Aalst, Fundamentals of
control flow in workflows, Acta Informatica 39 (3) (2003) 143–209.

[38] A. Polyvyanyy, L. Garćıa-Bañuelos, M. Dumas, Structuring acyclic process models,
Inf. Syst. 37 (6) (2012) 518–538.

[39] U. Goltz, W. Reisig, The non-sequential behavior of Petri nets, Inf. Control.
57 (2/3) (1983) 125–147.

[40] A. Polyvyanyy, M. La Rosa, C. Ouyang, A. H. M. ter Hofstede, Untanglings: A
novel approach to analyzing concurrent systems, Formal Aspects Comput. 27 (5-6)
(2015) 753–788.

[41] J. Engelfriet, Branching processes of Petri nets, Acta Informatica 28 (6) (1991)
575–591.

56

[42] S. Haar, C. Kern, S. Schwoon, Computing the reveals relation in occurrence nets,
Theor. Comput. Sci. 493 (2013) 66–79.

[43] P. Baldan, S. Crafa, A logic for true concurrency, J. ACM 61 (4) (2014) 24:1–24:36.

[44] L. van Maanen, H. van Rijn, J. P. Borst, Stroop and picture—word interference
are two sides of the same coin, Psychonomic Bulletin & Review 16 (6) (2009)
987–999.

[45] Y. Wand, R. Y. Wang, Anchoring data quality dimensions in ontological founda-
tions, Commun. ACM 39 (11) (1996) 86–95.

[46] F. D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of
information technology, MIS Q. 13 (3) (1989) 319–340.

[47] D. F. Larcker, V. P. Lessig, Perceived usefulness of information: A psychometric
examination, Decision Sciences 11 (1) 121–134.

[48] J. Mendling, M. Strembeck, J. Recker, Factors of process model comprehension:
Findings from a series of experiments, Decis. Support Syst. 53 (1) (2012) 195–206.

[49] G. W. Ryan, H. R. Bernard, Techniques to identify themes, Field Methods 15 (1)
(2003) 85–109.

[50] P. Sprent, Sign Test, Springer Berlin Heidelberg, 2011, pp. 1316–1317.

[51] F. Faul, E. Erdfelder, A. Buchner, A.-G. Lang, Statistical power analyses using
G*Power 3.1: Tests for correlation and regression analyses, Behavior Research
Methods 41 (4) (2009) 1149–1160.

[52] C. A. R. Hoare, Hints on programming language design, Tech. rep. (1973).

[53] K. C. Louden, Programming Languages: Principles and Practices, Advanced
Topics Series, Cengage Learning, 2011.

[54] N. Lohmann, E. Verbeek, R. M. Dijkman, Petri net transformations for business
processes: A survey, Trans. Petri Nets Other Model. Concurr. 2 (2009) 46–63.

[55] R. W. White, R. A. Roth, Exploratory Search: Beyond the Query-Response
Paradigm, Synthesis Lectures on Information Concepts, Retrieval, and Services,
Morgan & Claypool Publishers, 2009.

[56] H. Leopold, Natural Language in Business Process Models: Theoretical Founda-
tions, Techniques, and Applications, Vol. 168 of LNBIP, Springer, 2013.

[57] C. D. Manning, P. Raghavan, H. Schütze, Introduction to information retrieval,
Cambridge University Press, 2008.

[58] A. Awad, A. Polyvyanyy, M. Weske, Semantic querying of business process models,
in: EDOC, IEEE Computer Society, 2008, pp. 85–94.

[59] URI Planning Interest Group, URIs, URLs, and URNs: Clarifications and recom-
mendations 1.0, Tech. rep., W3C (2001).

[60] W3C XSL/XML Query Working Groups, The XPath 2.0 standard (2007).

57

[61] C. Date, H. Darwen, A Guide to the SQL Standard: A User’s Guide to the
Standard Database Language SQL, 4th Edition, Addison-Wesley, 1996.

[62] B. Meyer, Introduction to the Theory of Programming Languages, Prentice-Hall,
1990.

[63] A. Polyvyanyy, J. Vanhatalo, H. Völzer, Simplified computation and generalization
of the refined process structure tree, in: WS-FM, Vol. 6551 of LNCS, Springer,
2010, pp. 25–41.

[64] T. J. Parr, The Definitive ANTLR 4 Reference, Oreilly and Associate Series,
Pragmatic Programmers, LLC, 2013.

[65] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, 3rd Edition, Addison-Wesley Longman Publishing
Co., Inc., 2006.

[66] A. Polyvyanyy, Evaluation of a novel information retrieval model: eTVSM, Mas-
ter’s thesis, University of Potsdam (2007).

[67] Y. Li, B. Liu, A normalized Levenshtein distance metric, IEEE Trans. Pattern
Anal. Mach. Intell. 29 (6) (2007) 1091–1095.

[68] J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L. Petrucci,
R. Post, C. Stehno, M. Weber, The Petri net markup language: Concepts, tech-
nology, and tools, in: ICATPN, Vol. 2679 of LNCS, Springer, 2003, pp. 483–505.

[69] K. Schmidt, LoLA: A low level analyser, in: ICATPN, Vol. 1825 of LNCS, Springer,
2000, pp. 465–474.

[70] A. Polyvyanyy, M. Weidlich, Towards a compendium of process technologies: The
jBPT library for process model analysis, in: CAiSE Forum, Vol. 998 of CEUR
Workshop Proceedings, CEUR-WS.org, 2013, pp. 106–113.

[71] Z. Yan, R. M. Dijkman, P. Grefen, Generating process model collections, Softw.
Syst. Model. 16 (4) (2017) 979–995.

[72] R. Baeza-Yates, B. A. Ribeiro-Neto, Modern Information Retrieval: The concepts
and technology behind search, 2nd Edition, Pearson Education Ltd., Harlow,
England, 2011.

[73] A. Polyvyanyy, Business Process Querying, Springer, 2019.

[74] T. Jin, J. Wang, L. Wen, Querying business process models based on semantics,
in: DASFAA, Springer, 2011, pp. 164–178.

[75] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, J. D.
Reese, Model checking large software specifications, IEEE Trans. Software Eng.
24 (7) (1998) 498–520.

[76] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.

[77] A. Gurfinkel, M. Chechik, B. Devereux, Temporal logic query checking: A tool for
model exploration, IEEE Trans. Software Eng. 29 (10) (2003) 898–914.

58

[78] K. Wolf, Interleaving based model checking of concurrency and causality, Fundam.
Informaticae 161 (4) (2018) 423–445.

[79] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property specifications
for finite-state verification, in: ICSE, ACM, 1999, pp. 411–420.

[80] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, G. Naumovich, Flow analysis for
verifying properties of concurrent software systems, ACM Trans. Softw. Eng.
Methodol. 13 (4) (2004) 359–430.

[81] V. Sassone, M. Nielsen, G. Winskel, Models for concurrency: Towards a classifica-
tion, Theor. Comput. Sci. 170 (1-2) (1996) 297–348.

[82] L. A. Clarke, G. S. Avrunin, L. J. Osterweil, Using software engineering technology
to improve the quality of medical processes, in: ICSE Companion, ACM, 2008,
pp. 889–898.

[83] L. J. Osterweil, M. Bishop, H. M. Conboy, H. Phan, B. I. Simidchieva, G. S.
Avrunin, L. A. Clarke, S. Peisert, Iterative analysis to improve key properties
of critical human-intensive processes: An election security example, ACM Trans.
Priv. Secur. 20 (2) (2017) 5:1–5:31.

[84] W. M. P. van der Aalst, Process Mining: Data Science in Action, 2nd Edition,
Springer Berlin Heidelberg, 2016.

[85] C. D. Ciccio, M. Mecella, On the discovery of declarative control flows for artful
processes, ACM Trans. Manag. Inf. Syst. 5 (4) (2015) 24:1–24:37.

[86] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows: Bal-
ancing between flexibility and support, Comput. Sci. Res. Dev. 23 (2) (2009)
99–113.

[87] M. Westergaard, C. Stahl, H. A. Reijers, UnconstrainedMiner: Efficient discovery
of generalized declarative process models, Tech. Rep. BPM reports; Vol. 1328;
BPMcenter.org (2013).

[88] T. J. Parr, R. W. Quong, ANTLR: A predicated-ll(k) parser generator, Softw.
Pract. Exp. 25 (7) (1995) 789–810.

[89] M. Weidlich, A. Polyvyanyy, J. Mendling, M. Weske, Causal behavioural profiles:
Efficient computation, applications, and evaluation, Fundam. Informaticae 113 (3-
4) (2011) 399–435.

Appendix A. Interview Participants

Table A.10 lists profiles, including information on the roles, years of experience,
number of process models managed, and the domains of the managed models, of
the 23 participants of the interviews to inform the design of the PQL language.
The participants are listed in the chronological order of the conducted interviews.

59

Table A.10: Profiles of the interview participants.

No. Role Experience
(years)

Models
managed

Models domains

1 Business analysts NA 420 Motor insurance and
home insurance

2 Business excellence manager;
BSc in Economics and Ac-
counting

1.5 50 Banking, IT, and legal

3 Senior business excellence
manager

20 100 Banking and insurance

4 Business analyst and consul-
tant

15 over 30000 HR, finance, and procure-
ment

5 BPM&SOA consultant; BSc in
Engineering

7 NA Insurance, healthcare,
media, investment
banking, and telecom

6 BPM software product man-
ager and business analyst; BSc
in Informatics

15 many Product management

7 Business process analyst; BSc
in IT and MSc ni BPM

0.5 40-50 Commercial insurance

8 Process control engineer, man-
agement consultant, and busi-
ness owner; MSc in P.Eng.

over 40 NA Workflow management
and healthcare

9 Business architect, enterprise
architect, and business process
expert

1 100 Investment and infras-
tructure development

10 Business consultant and tech-
nology advisor

over 10 NA NA

11 Business analyst, business ar-
chitect, BPM coach, modeling
trainer, and business designer

over 20 hundreds NA

12 Management consultant; MSc
Mechanical Engineering and
PhD in real-time production
planning

21 NA Shipping, container ter-
minals, postal services,
manufacturing, finance,
HR, and IT

13 Business and process architect;
MSc of IT

10 300-500 Energy

14 CEO and process mining con-
sulting

NA many NA

15 World bank business analyst;
MBA

10 over 100 Mining, sales, procure-
ment, HR, and logistics

16 BPM consultant; MSc in Com-
puter Science

30 NA Manufacturing, banking,
healthcare, and insurance

17 BPM consultant, BPM Lead,
and process architect; MSc
in Professional Accounting,
MSc in IT, and MBA in e-
Commerce

over 7 NA NA

18 Senior consultant; BSc in Busi-
ness and Marketing

3 1000 NA

19 Senior BPM consultant; BSc
in Economics

11 over 1000 Banking, mining, and
government

20 Solutions architect over 12 many Sales and production
planning, stock manage-
ment, procurement, and
investment management

21 Business process technology
consultant

over 7 73 Risk assessment, trading,
HR, information man-
agement, safety, environ-
ment, and maintainance

22 Senior consultant; PhD in
Computer Science

0.5 6 Processing and provision
of data in a backend ser-
vice

23 Consultant 15 NA NA

60

Appendix B. Interview Quotes

This appendix lists interesting quotes from the participants of the conducted
interviews on the design of the PQL language. First, we list quotes that relate
to the usefulness and importance of the PQL language.

○ “Yes, definitely, it would be a good idea to be able to analyze our process
repository in a way like this [process querying].” (business analyst).

○ “If you’re trying to look for something that you can improve on, having these
queries and trying to find processes would help, so rather than businesses coming
to you, you can be a bit more proactive.” (business excellence manager).

○ “That [process querying] would be extremely useful. It would save enormous
amounts of time. Actually, it would enable us to undertake an analysis that we
can’t do at the moment. So, it would open more doors for us to actually be able
to do different, potentially more valuable things.” (senior business excellence
manager).

○ “This [process querying] can be useful from a governance perspective, i.e., to
be able to check process controls are in place. This also can assist with risks
associated with the process.” (business analyst).

○ “I’ve been looking for years for some solutions in this field [process querying] ...
it’s for me very important and it is extremely useful to get this information”
(BPM software product manager and business analyst).

○ “I think from an overall strategic level it’ll bring a lot of benefits because
different parts of the organization operate in different ways and being able
to actually analyze it through kind of a structured query language could be
useful for an analyst. I can see it being quite highly useful because repositories
right now are static and searching through can be time-consuming.” (business
analyst).

Next, we present quotes that relate to the SQL-like syntax of the PQL language.

○ “SQL-like query language would be good ... people will adopt it if they can
relate it so something familiar, like SQL.” (BPM consultant).

○ “SQL-like language is a science with which you can pose precise questions.”
(management consultant).

○ “I think from an overall strategic level it’ll bring a lot of benefits because
different parts of the organization operate in different ways and being able
to actually analyze it [process repository] through kind of a structured query
language could be useful for an analyst.” (business analyst).

Finally, we list quotes that relate to the exploratory search capabilities of PQL.

○ “It should be possible to specify activities where tasks similar to ‘Apply discount’
can occur because having the exact string gets very difficult . . . someone thinks
‘apply discount’ . . . someone calls it ‘discount the thing’ or whatever. Is it
something you also consider? I think this is something that makes such a query
language quite powerful” (CEO of a company working in BPM and process
mining consultancy)

61

○ “Sometimes the customers’ language is different, but they mean the same thing
. . . that [support for label similarities] would be something helpful that I would
definitely use.” (senior consultant)

○ “I think that [support for label similarities] will be interesting because people
look for something at different angles to see the same thing.” (business analyst)

Appendix C. PQL Grammar

This appendix specifies the complete grammar of PQL in the ANTLR notation.
ANTLR (ANother Tool for Language Recognition) is a parser generator for
reading and translating structured text or binary files [88, 64]. ANTLR can take
a grammar of a language as input and generate source code for a parser that
can build and walk syntax trees [62]. The language must be specified using a
context-free grammar expressed using extended Backus-Naur Form [65].

// PQL version 1.0 grammar for ANTLR v41
// [The "BSD licence"]2
// Copyright (c) 2014-2023 Artem Polyvyanyy3
// All rights reserved.4

5
grammar PQL;6

7
query : variables8

SELECT attributes9
FROM locations10
(WHERE predicate)? EOS ;11

12
variables : variable* ;13
variable : varName ASSIGN14

setOfTasks EOS ;15
16

varName : VARIABLE_NAME ;17
18

attributes : attribute (SEP attribute)* ;19
attribute : universe20

| attributeName ;21
22

locations : location (SEP location)* ;23
location : universe24

| locationPath ;25
26

universe : UNIVERSE ;27
attributeName : STRING ;28
locationPath : STRING ;29

30
setOfTasks : tasks31

| union32
| intersection33
| difference ;34

35
tasks : varName36

| setOfAllTasks37
| setOfTasksLiteral38
| setOfTasksConstruction39
| setOfTasksParentheses ;40

41
setOfAllTasks :42

GET_TASKS LP RP;43
44

setOfTasksLiteral :45

LB (task (SEP task)*)? RB ;46
47

task : approximate label48
| label (LSB similarity RSB)? ;49

50
approximate: TILDE ;51
label : STRING ;52
similarity : SIMILARITY ;53

54
setOfTasksConstruction :55

unaryPredicateConstruction56
| binaryPredicateConstruction ;57

58
unaryPredicateConstruction :59

(GET_TASKS)unaryPredicateName60
LP setOfTasks RP ;61

62
binaryPredicateConstruction :63

(GET_TASKS)binaryPredicateName64
LP setOfTasks SEP setOfTasks65
SEP anyAll RP ;66

67
anyAll : ANY | ALL ;68

69
unaryPredicateName : CAN_OCCUR70

| ALWAYS_OCCURS;71
72

binaryPredicateName: CAN_CONFLICT73
| CAN_COOCCUR74
| CONFLICT75
| COOCCUR76
| TOTAL_CAUSAL77
| TOTAL_CONCUR ;78

79
predicate : proposition80

| conjunction81
| disjunction82
| logicalTest ;83

84
proposition: unaryPredicate85

| binaryPredicate86
| unaryPredicateMacro87
| binaryPredicateMacro88
| setPredicate89
| truthValue90

62

| parentheses91
| negation ;92

93
unaryPredicate : unaryPredicateName94

LP task RP ;95
96

binaryPredicate : binaryPredicateName97
LP task SEP task RP ;98

99
unaryPredicateMacro : unaryPredicateName100

LP setOfTasks SEP anyAll RP ;101
102

binaryPredicateMacro:103
binaryPredicateMacroTaskSet104

| binaryPredicateMacroSetSet ;105
106

binaryPredicateMacroTaskSet :107
binaryPredicateName LP task108
SEP setOfTasks SEP anyAll RP ;109

110
binaryPredicateMacroSetSet :111

binaryPredicateName112
LP setOfTasks SEP setOfTasks113
SEP anyEachAll RP ;114

115
anySomeEachAll : ANY | SOME | EACH | ALL ;116

117
setPredicate: taskInSetOfTasks118

| setComparison ;119
120

taskInSetOfTasks : task IN setOfTasks ;121
122

setComparison : setOfTasks123
setComparisonOperator124
setOfTasks ;125

126
setComparisonOperator : identical127

| different128
| overlapsWith129
| subsetOf130
| properSubsetOf ;131

132
truthValue : TRUE133

| FALSE ;134
135

logicalTest: isTrue136
| isNotTrue137
| isFalse138
| isNotFalse ;139

140
union : (tasks | difference |141

intersection) UNION (tasks |142
difference | intersection)143
(UNION (tasks | difference144
| intersection))* ;145

146
intersection : (tasks | difference)147

INTERSECTION148
(tasks | difference)149
(INTERSECTION (tasks150
| difference))* ;151

152
difference : tasks DIFFERENCE tasks153

| tasks DIFFERENCE154
difference ;155

156
negation : NOT proposition ;157

158

isTrue : proposition IS TRUE ;159
isNotTrue : proposition IS NOT TRUE ;160
isFalse : proposition IS FALSE ;161
isNotFalse : proposition IS NOT FALSE ;162

163
disjunction : (proposition | logicalTest |164

conjunction) OR (proposition |165
logicalTest | conjunction) (OR166
(proposition | logicalTest167
| conjunction))* ;168

169
conjunction : (proposition | logicalTest)170

AND (proposition | logicalTest)171
(AND (proposition172
| logicalTest))* ;173

174
parentheses : LP proposition RP175

| LP conjunction RP176
| LP disjunction RP177
| LP logicalTest RP ;178

179
setOfTasksParentheses : LP varName RP180

| LP universe RP181
| LP setOfTasksLiteral RP182
| LP setOfTasksConstruction RP183
| LP union RP184
| LP difference RP185
| LP intersection RP186
| LP setOfTasksParentheses RP ;187

188
UNIVERSE : ’*’ ;189

190
STRING : DQ (ESC_SEQ191

| ~(’\\’|’"’))* DQ ;192
VARIABLE_NAME: (’a’..’z’|’_’)193

(’a’..’z’|’0’..’9’|’_’)*;194
SIMILARITY : ’1’ | ’0’ (’.’ ’0’..’9’+)?195

| ’.’ ’0’..’9’+ ;196
197

LP : ’(’ ;198
RP : ’)’ ;199
LB : ’{’ ;200
RB : ’}’ ;201
LSB : ’[’ ;202
RSB : ’]’ ;203
DQ : ’"’ ;204
EOS : ’;’ ;205
SEP : ’,’ ;206
ASSIGN : ’=’ ;207
TILDE : ’~’ ;208

209
ESC_SEQ : ’\\’ (’\"’|’\\’|’/’|’b’|210

’f’|’n’|’r’|’t’)211
| UNICODE_ESC ;212

UNICODE_ESC : ’\\’ ’u’ HEX_DIGIT213
HEX_DIGIT HEX_DIGIT HEX_DIGIT ;214

HEX_DIGIT : (’0’..’9’|215
’a’..’f’|’A’..’F’) ;216

WS : [\r\t\n]+ -> skip ;217
LINE_COMMENT: ’--’ ~[\r\n]* -> skip ;218

219
SELECT : ’SELECT’ ;220
FROM : ’FROM’ ;221
WHERE : ’WHERE’ ;222

223
EQUALS : ’EQUALS’ ;224
OVERLAPS : ’OVERLAPS’ ;225
WITH : ’WITH’ ;226

63

SUBSET : ’SUBSET’ ;227
PROPER : ’PROPER’ ;228
GET_TASKS : ’GetTasks’ ;229

230
NOT : ’NOT’ ;231
AND : ’AND’ ;232
OR : ’OR’ ;233

234
ANY : ’ANY’ ;235
SOME : ’SOME’ ;236
EACH : ’EACH’ ;237
ALL : ’ALL’ ;238

239
IN : ’IN’ ;240
IS : ’IS’ ;241
OF : ’OF’ ;242

243
TRUE : ’TRUE’ ;244
FALSE : ’FALSE’ ;245

246
identical : EQUALS ;247
different : NOT EQUALS ;248
overlapsWith : OVERLAPS WITH ;249
subsetOf : IS SUBSET OF ;250
properSubsetOf : IS PROPER SUBSET OF ;251

252
UNION : ’UNION’ ;253
INTERSECTION : ’INTERSECT’ ;254
DIFFERENCE : ’EXCEPT’ ;255

256
CAN_OCCUR : ’CanOccur’ ;257
ALWAYS_OCCURS : ’AlwaysOccurs’ ;258
CAN_CONFLICT : ’CanConflict’ ;259
CAN_COOCCUR : ’CanCooccur’ ;260
CONFLICT : ’Conflict’ ;261
COOCCUR : ’Cooccur’ ;262
TOTAL_CAUSAL : ’TotalCausal’ ;263
TOTAL_CONCUR : ’TotalConcurrent’ ;264

Appendix D. Predicate Denotations

This appendix lists mathematical denotations of four alternatives of specifying
the Predicate construct.

Every specimen of SetComparison denotes a set comparison operation.9

MSetComparison

[p ∶ SetComparison,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MSetOfTasks(p.tasks1, s, vals) =
MSetOfTasks(p.tasks2, s, vals)

p.oper is

Identical

MSetOfTasks(p.tasks1, s, vals) ≠
MSetOfTasks(p.tasks2, s, vals)

p.oper is

Different

MSetOfTasks(p.tasks1, s, vals) ∩
MSetOfTasks(p.tasks2, s, vals) ≠ ∅

p.oper is

OverlapsWith

MSetOfTasks(p.tasks1, s, vals) ⊆
MSetOfTasks(p.tasks2, s, vals)

p.oper is

SubsetOf

MSetOfTasks(p.tasks1, s, vals) ⊂
MSetOfTasks(p.tasks2, s, vals)

p.oper is

ProperSubsetOf

The denotation of a specimen of UnaryPredicate is a unary behavioral relation.

MUnaryPredicate[p ∶ UnaryPredicate,
s ∶ S, vals ∶ ℘(V × ℘(T))] ≜

⎧⎪⎪⎨⎪⎪⎩

canOccur(s,MTask(p.task)) p.name is CanOccur

alwaysOccurs(s,MTask(p.task)) p.name is AlwaysOccurs

Note that the behavioral relation is computed for the system matched to the
query. Similarly, the meaning of a specimen of BinaryPredicate is a binary
behavioral relation. The reader can refer to Section 5.5 to learn about methods
for computing unary and binary PQL predicates.

9As the meaning of the SetOfTasks construct is a set composed of the meanings of all and
only its Task elements, each interpreted as a set of character strings, the identity of elements
is defined as set equality over sets of character strings.

64

MBinaryPredicate

[p ∶ BinaryPredicate,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

canConflict(s,MTask(p.task1),
MTask(p.task2))

p.name is

CanConflict

canCooccur(s,MTask(p.task1),
MTask(p.task2))

p.name is

CanCooccur

conflict(s,MTask(p.task1),
MTask(p.task2))

p.name is

Conflict

cooccur(s,MTask(p.task1),
MTask(p.task2))

p.name is

Cooccur

totalCausal(s,MTask(p.task1),
MTask(p.task2))

p.name is

TotalCausal

totalConcurrent(s,MTask(p.task1),
MTask(p.task2))

p.name is

TotalConcurrent

PQL uses the mechanism of macros to combine the results of several unary or
binary relations. A specimen of UnaryPredicateMacro combines several results
of unary behavioral relations using existential and universal quantifiers.

MUnaryPredicateMacro

[p ∶ UnaryPredicateMacro,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ t ∈MSetOfTasks(p.tasks, s, vals) ∶
canOccur(s, t)

(p.name is CanOccur)∧
(p.q is Any)

∀ t ∈MSetOfTasks(p.tasks, s, vals) ∶
canOccur(s, t)

(p.name is CanOccur)∧
(p.q is All)

∃ t ∈MSetOfTasks(p.tasks, s, vals) ∶
alwaysOccurs(s, t)

(p.name is AlwaysOccurs)∧
(p.q is Any)

∀ t ∈MSetOfTasks(p.tasks, s, vals) ∶
alwaysOccurs(s, t)

(p.name is AlwaysOccurs)∧
(p.q is All)

For example, a specimen p of UnaryPredicateMacro such that p.name is of
type AlwaysOccurs and p.q is of type All denotes the truth value of true in
the context of system s iff for every task t in the set of tasks defined by p.tasks
it holds that t occurs in every instance of s. PQL offers macros that relate a
task to a set of tasks and macros that relate two sets of tasks. One can use a
specimen of the BinaryPredicateMacroTaskSet construct to test if a task is in
a binary behavioral relation with some (or all) tasks in a given set.

MBinaryPredicateMacroTaskSet

[p ∶ BinaryPredicateMacroTaskSet,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ t ∈MSetOfTasks(p.tasks, s, vals) ∶
canConflict(s,MTask(p.task), t)

(p.name is

CanConflict)∧
(p.q is Any)

∀ t ∈MSetOfTasks(p.tasks, s, vals) ∶
canConflict(s,MTask(p.task), t)

(p.name is

CanConflict)∧
(p.q is All)

. . .

We only specify the denotation of specimen p for which it holds that p.name is
of type CanConflict. Note that the denotations of specimens for other binary
predicate names are defined analogously. For instance, one can use specimen p of
BinaryPredicateMacroTaskSet such that p.name is of type TotalCausal and
p.q is of type All to check if the task defined by p.task is in the TotalCausal

65

behavioral relation with every task in the set of tasks defined by p.tasks.
The denotation of a specimen of BinaryPredicateMacroSetSet is as follows.

MBinaryPredicateMacroSetSet

[p ∶ BinaryPredicateMacroSetSet,
s ∶ S, vals ∶ ℘(V × ℘(T))]

≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ t1 ∈MSetOfTasks(p.tasks1, s, vs)
∃ t2 ∈MSetOfTasks(p.tasks2, s, vs) ∶

canConflict(s, t1, t2)

(p.name is

CanConflict)∧
(p.q is Any)

∃ t1 ∈MSetOfTasks(p.tasks1, s, vs)
∀ t2 ∈MSetOfTasks(p.tasks2, s, vs) ∶

canConflict(s, t1, t2)

(p.name is

CanConflict)∧
(p.q is Some)

∀ t1 ∈MSetOfTasks(p.tasks1, s, vs)
∃ t2 ∈MSetOfTasks(p.tasks2, s, vs) ∶

canConflict(s, t1, t2)

(p.name is

CanConflict)∧
(p.q is Each)

∀ t1 ∈MSetOfTasks(p.tasks1, s, vs)
∀ t2 ∈MSetOfTasks(p.tasks2, s, vs) ∶

canConflict(s, t1, t2)

(p.name is

CanConflict)∧
(p.q is All)

. . .

Note that the missing definitions are similar to those shown above. For example,
one can use a specimen p of BinaryPredicateMacroSetSet such that p.name
is of type Conflict and p.q is of type Any to check if some task in the set of
tasks defined by p.tasks1 is in the Conflict behavioral relation with some task
in the set of tasks defined by p.tasks2.

Appendix E. Implementation Details

This appendix contains further details on PQL tools presented in Section 6.

The PQL Bot. When initializing a PQL bot instance, one can configure it via
CLI. Some options of the PQL bot CLI are listed in Table E.11. Every PQL
bot instance has a unique name, which can be assigned using option -n. If this
option is not used, a random unique name is assigned. Once started, a PQL bot
instance indexes stored (but not yet indexed) models in succession. One can use
CLI options -s and -i to specify the time to sleep, i.e., to stay idle, between
two successive indexing tasks, and the maximal time to attempt indexing of a
model. If these options are not used, the parameters get configured based on
the values in the global configuration file. If indexing of a model can not be
completed within the given time frame, the model is marked as such that can
not be indexed using this version of the bot, and the bot proceeds with indexing
the next model. The -h and -v CLI options, respectively, print the help message
and get the version of the invoked PQL bot instance.

Table E.11: CLI options of the PQL bot.

Option Option (short) Parameter Description

--help -h Print help message

--index -i <number> Maximal indexing time (in seconds)

--name -n <string> Name of this bot (maximum 36 characters)

--sleep -s <number> Time to sleep between indexing jobs (in seconds)

--version -v Get version of this bot

66

Once started, a PQL bot instance runs as a background process until it is shut
down. An example command line output of a PQL bot instance is listed below.

>> java -jar PQL.BOT-1.0.jar -n=Brisbane -s=60 -i=86400
>> ===
>> Process Query Language (PQL) Bot ver. 1.0
>> ===
>> Name: Brisbane
>> Sleep time: 60s
>> Max. index time: 86400s
>> ===
>> 10:45:18.487 Brisbane - There are no pending jobs
>> 10:45:18.487 Brisbane - Sent an alive message
>> 10:45:18.497 Brisbane - Going to sleep for 60 seconds
>> 10:46:18.505 Brisbane - Woke up
>> 10:46:18.525 Brisbane - Retrieved indexing job for the model with ID 1
>> 10:46:18.575 Brisbane - Start checking model with ID 1
>> 10:46:23.506 Brisbane - Finished checking model with ID 1
>> 10:46:23.506 Brisbane - Start indexing model with ID 1
>> 10:47:03.608 Brisbane - Finished indexing model with ID 1
>> 10:47:03.608 Brisbane - Going to sleep for 60 seconds
>> 10:48:03.613 Brisbane - Woke up
>> 10:48:03.623 Brisbane - Retrieved indexing job for the model with ID 2
>> 10:48:03.673 Brisbane - Start checking model with ID 2
>> 10:48:13.248 Brisbane - Finished checking model with ID 2
>> 10:48:13.249 Brisbane - Start indexing model with ID 2
>> 10:49:52.679 Brisbane - Finished indexing model with ID 2
>> 10:49:52.679 Brisbane - Going to sleep for 60 seconds
>> 10:50:52.704 Brisbane - Woke up
>> 10:50:52.704 Brisbane - There are no pending jobs
>> ...

The PQL Tool. Table E.12 lists some CLI options of the PQL tool. The PQL
tool allows a user to store a given model (option -s), check if a model can be
indexed (option -c), index a model (option -i), delete a model and its index
(option -d), visualize the parse tree of a given query (option -p), execute a query
(options -q), and reset the PQL environment (option -r). The CLI can be used
to access help information (option -h) and the version of the tool (option -v).

Table E.12: CLI options of the PQL tool.

Option Option (short) Parameter Description Required opt.

--check -c Check if model can be indexed -id

--delete -d Delete model (and its index) -id

--help -h Print help message

--index -i Index model -id

--identifier -id <string> Model identifier -id

--parse -p Show PQL query parse tree -pql

--pnmlPath -pnml <path> PNML path

--pqlPath -pql <path> PQL path

--query -q Execute PQL query -pql

--reset -r Reset this PQL instance

--store -s Store model -pnml (-id)

--version -v Get version of this tool

To store models, the CLI option -s must be accompanied by option -pnml that
specifies a path either to a single PNML file or to a directory that contains
PNML files. If a path to a PNML file is used, the call to the PQL tool must
include option -id to specify a unique identifier to associate with the model.
Otherwise, models are attempted to be stored using their file names as unique

67

identifiers. Once stored, a model can be indexed by a PQL bot instance or by
the PQL tool using the CLI option -i accompanied by option -id that specifies
the unique identifier that was used to store the model. When indexing a model,
the PQL tool uses the same routines as the PQL bot.

Note that the dynamic semantics of PQL is implemented over sound workflow
systems—a special class of Petri net systems. One can check whether a given
Petri net system is a sound workflow system by calling the PQL tool with
option -c. Note that every request to index a model in the PQL environment
is automatically preceded by a soundness check of this model. One can delete
a model using option -d. By deleting a model, the user also deletes its index.
Both options -c and -d require option -id to uniquely identify a model to be
checked and deleted, respectively. To execute a PQL query, a user can use option
-q together with option -pql that specifies a path to a file that contains a PQL
query captured using the concrete syntax proposed in Section 5.3. To visualize
the parse tree of a PQL query, one can use option -p together with option -pql.
Finally, one can reset the PQL environment using option -r. By resetting the
environment, one deletes all stored models and indexes.

An example command line output of executing a PQL query discussed in
Section 5.5 using the PQL tool is shown below.

>> java -jar PQL.TOOL-1.0.jar -q -pql=query.pql

>> PQL query: SELECT * FROM * WHERE AlwaysOccurs("process payment"[0.75]);

>> Attributes: [UNIVERSE]

>> Locations: [UNIVERSE]

>> Task: "process payment"[0.75] -> ["process payment by cash",

>> "process payment by check"]

>> Result: [Fig.4.pnml]

Appendix F. Discussion of Evaluation Results

This appendix contains discussions of the results reported in Section 7.

Datasets. Tables 7 and 8 report statistics on the structural properties of the
two model collections used in the evaluation. By XOR-join and XOR-split
we refer to a place with multiple input transitions and a place with multiple
output transitions, respectively. By AND-join and AND-split we refer to a
transition with multiple input places and a transition with multiple output
places, respectively. Polygons, bonds, and rigids are different types of SESE
components in the WF-tree of a workflow system [89], where a polygon is a
sequence of SESE components in which every two subsequent components share
one node, a bond is a collection of SESE components that share entry and exit
nodes, and a rigid is an unstructured component [15].

Queries. Table 9 lists all the PQL query categories, groups, and subgroups and
provides the number of query templates used in the evaluation. The first category
contains six query templates capturing individual atomic behavioral predicates.
These can be divided into two groups, one covering two unary predicates (1.a)
and the other covering four binary predicates (1.b).

68

The second category is a result of combining atomic predicates via logical
operations. This category has two groups, one for connecting the same predicates
(2.a), and the other for connecting mixed predicates (2.b). The former group
can be further divided into three subgroups which capture, respectively, the
negation of each predicate (2.a.1), the conjunctions of each predicate twice, three,
or four times (2.a.2), and the disjunctions of each predicate twice, three, or
four times (2.a.3). The latter group also has three subgroups which capture the
conjunctions of two, three, or four different predicates (2.b.1), the disjunctions
of two, three, or four different predicates (2.b.2), and different combinations of
three logical operations between mixed predicates (2.b.3).

The third category captures predicate macros in one group (3.a) and the
construction of task sets using predicates in the other group (3.b). The first
group has three subgroups. One subgroup applies each of the unary predicate
macros over a task set of two, three, or four tasks in conjunction (ALL) or
disjunction (ANY) (3.a.1); one subgroup applies each of the binary predicate
macros between a single task and a task set of two, three, or four tasks in
conjunction or disjunction (3.a.2); and one subgroup applies each of the binary
predicate macros between two task sets each consisting of two, three, or four
tasks (3.a.3). The second group has four subgroups. The first two subgroups
apply the set predicate TaskInSetOfTasks to a task set that is constructed
using unary behavioral predicates (3.b.1) or binary predicates (3.b.2). The last
two subgroups capture task set constructions using mixed behavioral predicates
with set operations (3.b.3) or set comparisons (3.b.4).

Experiment 1.1: Impact of PQL bots on indexing time. Fig. 9 plots
the indexing times (in seconds) for different parts of process model collections
against different numbers of bots for the (a) industrial and (b) synthetic models.

Indexing the whole collection of industrial models with one bot took 6 hours
and 54 minutes. Two bots managed to index 493 systems in 3 hours and 28
minutes (approximately two times faster than with one bot). Note that eight
bots spent 1 hour and 12 minutes indexing the same collection (5.8 times faster
than with one bot). A similar trend can be observed for the synthetic models.
The relationship between the indexing time and the number of bots is best
described by the power function y = t × xk, where x is the number of bots and y
is the indexing time. For the industrial process models, the estimated values for
constant t are 6,065.6, 11,241, 16,735, and 23,071 for 25%, 50%, 75%, and 100%
of models in the collection, respectively. The estimated values for coefficient k
are -0.845, -0.834, -0.826, and -0.839 for 25%, 50%, 75%, and 100% of models
in the industrial collection, respectively. For the synthetic process models, the
estimated values for constant t are 17,991, 35,494, 52,086, and 68,077 for 25%,
50%, 75%, and 100% of models in the collection, respectively. The estimated
values for coefficient k are -0.833, -0.806, -0.827, and -0.834 for 25%, 50%, 75%,
and 100% of models in the synthetic collection, respectively. The coefficient of
determination R2 ranges from 0.9901 to 0.9936 for the industrial process models
and from 0.9834 to 0.9884 for the synthetic process models, indicating that the
fitted functions can explain most of the variance in the indexing time.

69

This experiment shows that the indexing time grows linearly with the size of
a process model collection. Using one PQL bot, 25% of models in the industrial
collection were indexed in 1 hour and 48 minutes, 50% were indexed in 3 hours
and 22 minutes, 75% in 5 hours and 2 minutes, and the whole collection was
indexed in 6 hours and 54 minutes. This relationship between the indexing time
and the collection size is best captured by the linear function y = 49.549x+158.65,
where x is the number of models in the collection and y is the indexing time. The
coefficient of determination R2 for the above example is 0.9985. The coefficients
of determination R2 for the fitted linear functions on four data points range
from 0.9985 to 0.9997 (for different numbers of bots). We observed the same
trend for the synthetic collection, with R2 values ranging from 0.9949 to 0.9992.

Experiment 1.2: Impact of model size on indexing time. Fig. 10 plots
the indexing times (in seconds) against different sizes of workflow systems for
the industrial and synthetic models.

The relation between the indexing time and the model size in the industrial
collection is best approximated by the power function y = 0.8171× x1.7579, which
results in a coefficient of determinationR2 of 0.9915. One obvious outlier workflow
system in the industrial collection (a model with 25 observable transitions whose
indexing took 858.7 seconds) can be explained by the much bigger size of its
state space (2,097,422 reachable states, measured by the LoLA tool) compared
to the sizes of state spaces of the other models in the collection (equal or less
than 262,156 reachable states). For the synthetic models, the relation between
the indexing time and the model size is best explained by the power function
y = 0.7423 × x1.7775, which results in R2 = 0.99.

Given a system, either industrial or synthetic, we noticed that it could be
classified as an outlier using the value f(x, y) = x2×log(y), where x is the number
of observable transitions of the system and y is the size of the state space of the
system in terms of the number of its reachable states. The Pearson’s correlation
coefficient between the indexing times and the values of f is 0.9426 and 0.9692
for the industrial and synthetic models, respectively. The residual analysis has
revealed that the four outliers in the industrial collection are among the six
models with the highest values of f , while the seven outliers in the synthetic
collection are among the eight models with the highest values of f . The outliers
were identified as models with standardized residuals beyond ±3 units. The
four outliers in the industrial collection have 25 (5 minutes and 38 seconds to
index), 25 (14 minutes and 19 seconds), 32 (8 minutes and 48 seconds), and 35
(8 minutes and 48 seconds) observable transitions. Their state spaces comprise
114,717, 2,097,422, 390, and 882 reachable states, respectively. The seven outliers
in the synthetic collection have 36 (11 minutes and 23 seconds to index), 36 (10
minutes and 30 seconds), 42 (14 minutes and 58 seconds), 46 (15 minutes and 23
seconds), 56 (27 minutes and 10 seconds), 63 (39 minutes and 59 seconds), 67 (41
minutes and 6 seconds) observable transitions. Their state spaces have 303,118,
131,108, 103,694, 1,602, 5,730, 311,306, and 6,818 reachable states, respectively.

Experiment 1.4: Impact of index size on indexing time. We performed
four indexing runs to observe the impact on the indexing time. In the first

70

run, Set 1 was indexed first, followed by Set 2, followed by Set 3, and finally
concluded by indexing Set 4. The second run indexed the models in the order
of Set 4, Set 1, Set 2, and finally, Set 3. The third run indexed the models in
the order of Set 3, Set 4, Set 1, and finally, Set 2. The fourth run indexed the
models in the order of Set 2, Set 3, Set 4, and finally, Set 1. The same label
similarity threshold of 1.0 was used in all the runs. All four indexing runs were
accomplished by one PQL bot.

For all the sets, we observed that the index size does not significantly affect
the average indexing time. For models in Set 1, the recorded average indexing
times are 53.63 seconds, 53.65 seconds, 54.09 seconds, and 54.26 seconds in the
first, second, third, and fourth run, respectively. For models in Set 2, the recorded
average indexing times are 53.29 seconds, 53.46 seconds, 53.70 seconds, and
53.80 seconds in the first, second, third, and fourth run, respectively. For models
in Set 3, the recorded average indexing times are 44.75 seconds, 44.79 seconds,
44.93 seconds, and 45.15 seconds in the first, second, third, and fourth run,
respectively. Finally, for models in Set 4, the recorded average indexing times are
49.6 seconds, 49.52 seconds, 49.9 seconds, and 49.92 seconds in the first, second,
third, and fourth run, respectively. Given any set out of the four sets of models,
the relation between the index size (used as a starting point to index the given
set) and the average indexing time of a model in the set is best approximated
by a polynomial function. The average indexing time for an industrial model in
different sets at different positions in the indexing queue ranges from 44.75 to
54.26 seconds, with the difference between the maximum and minimum average
indexing time for a given set at different indexing positions always being within
0.65 seconds. The measured coefficients of determination are equal to 0.9215,
0.9847, 0.9998, and 0.7366 for Set 1, Set 2, Set 3, and Set 4, respectively. The
experiment demonstrates a general trend of a negligible increase in the indexing
time with the growth of the index size. This observation can be explained by
the fact that the introduced overhead is due to write operations on the PQL
index, which modern database management systems can efficiently handle.

In the measurements of the average indexing times for the synthetic collection,
we observed a similar trend as in the measurements for the industrial collection.
In particular, given any set out of the four sets of models in the synthetic collection
(note that each set of synthetic models is composed of 250 random models),
the relation between the index size (used as a starting point to index the given
set) and the average indexing time of a model in the set is best approximated
by a polynomial function. The average indexing time for a synthetic model in
different sets at different positions in the indexing queue ranges from 61.7 to
86.74 seconds, with the difference between the maximum and minimum average
indexing time for a given set at different indexing positions always being within
0.75 seconds. The measured coefficients of determination are equal to 0.8456,
0.9947, 0.9999, and 0.8545 for Set 1, Set 2, Set 3, and Set 4, respectively.

Experiment 2.1: Impact of query threads on querying time. Fig. 11 plots
the querying times (in seconds) for different parts of process model collections
against different numbers of query threads. The relation between the querying

71

time and the number of threads is best captured by the power function y = t×xk,
where y is the querying time, and x is the number of query threads. For the
industrial process models, the estimated values for constant t are 2.0793, 4.1112,
6.3066, and 8.3917 for 25%, 50%, 75%, and 100% of models in the collection,
respectively. The estimated values for coefficient k are -0.582, -0.584, -0.595,
and -0.594 for 25%, 50%, 75%, and 100% of models in the industrial collection,
respectively. For the synthetic process models, the estimated values for constant
t are 4.1811, 8.6902, 13.693, and 19.444 for 25%, 50%, 75%, and 100% of models
in the collection, respectively. While the estimated values for coefficient k are
-0.581, -0.597, -0.604, and -0.612 for 25%, 50%, 75%, and 100% of models in
the synthetic collection, respectively. The coefficient of determination R2 ranges
from 0.9969 to 0.9982 for the industrial models and from 0.9983 to 0.9989 for
the synthetic models, indicating that the fitted models can explain most of the
variance in the querying time.

The measurements obtained in this experiment can be used to show that
the querying time grows linearly with the size of a process model collection.
For example, the measured average querying time with one query thread over
25% of the industrial models is 2.037 seconds, over 50% is 4.037 seconds, over
75% is 6.109 seconds, and over the whole collection is 8.259 seconds. This
trend is best described by the linear relation y = 0.0168 × x − 0.0658, where
x is the number of models in the collection and y is the querying time. The
coefficient of determination R2 for the above example is 0.9998. The coefficients
of determination R2 for the fitted linear functions on four data points range from
0.9988 to 1.0 (for different numbers of query threads). We observed the same
trend for the synthetic collection, with R2 values ranging from 0.9967 to 0.9998.

Experiment 2.2: Impact of query types on querying time. Figs. 12(a)
and 12(b) show the average querying times for the collection of industrial models
for queries in Categories 1 and 2, while Figs. 12(c) and 12(d) show the average
querying times for queries in Category 3. The average querying times for the
synthetic collection are shown in Figs. 12(e) and 12(f) (Categories 1 and 2)
and Figs. 12(g) and 12(h) (Category 3). Queries in Category 1 only comprise
atomic predicates and, thus, are the fastest. The measured average querying
time for the Category 1 queries using one query thread is 1.75 seconds for the
493 models in the industrial collection (approximately 3.5ms per one model-
query check) and 4.84 seconds for the 1,000 models in the synthetic collection
(approximately 4.8ms per one model-query check). With eight query threads,
the Category 1 queries were, on average, accomplished in 0.47 seconds for the
493 models in the industrial collection and 1.61 seconds for the 1,000 models in
the synthetic collection. Queries in Category 2 comprise atomic predicates and
logical connectives. Thus, they require more time to accomplish than queries in
Category 1. The measured average querying time for Category 2 queries with one
thread is 2.8 seconds for the industrial models and 8.2 seconds for the synthetic
models. With eight query threads, it is 0.84 and 2.52 seconds for the industrial
and synthetic models, respectively. Queries in Category 3 comprise macros and,
hence, are the lengthiest. The average querying time for Category 3 queries

72

with one query thread is 10.89 seconds for the industrial models (approximately
11ms per one model-query check) and 24.76 seconds for the synthetic models
(approximately 25ms per one model-query check). With eight query threads, it
is 3.23 and 6.96 seconds for the industrial and synthetic models, respectively.

Figs. 12(a), 12(c), 12(e) and 12(g) demonstrate the linear dependency between
the number of models in a collection and querying time for different query types.
The coefficients of determination R2 for the fitted linear functions for different
query subgroups range from 0.9718 to 1.0 for the industrial models and from
0.9592 to 0.9992 for the synthetic models. Finally, Figs. 12(b), 12(d), 12(f),
and 12(h) show that for all the query subgroups the relation between the
querying time and the number of query threads follows the trend observed
in Experiment 2.1. The coefficients of determination R2 for the fitted power
functions for different query subgroups range from 0.9724 to 0.998 for the
industrial models and from 0.9329 to 0.9955 for the synthetic models.

Appendix G. PQL Queries

This appendix contains 150 PQL query templates used in the evaluation
reported in Section 7. Each template is a PQL query with placeholders for
activity labels. The templates can be instantiated with specific labels and used
as a benchmark to evaluate the performance of PQL tools. The query templates
were developed to exploit the various features of the PQL grammar. According
to the PQL features they support, these query templates are divided into three
categories and further subdivided into groups and subgroups; refer to Section 7.1
for details. The PQL query templates are listed in Table G.13.

Table G.13: PQL query templates.

No. ID PQL template

1 1.a.1 SELECT * FROM * WHERE CanOccur("L1");

2 1.a.2 SELECT * FROM * WHERE AlwaysOccurs("L1");

3 1.b.1 SELECT * FROM * WHERE Cooccur("L1","L2");

4 1.b.2 SELECT * FROM * WHERE Conflict("L1","L2");

5 1.b.3 SELECT * FROM * WHERE TotalCausal("L1","L2");

6 1.b.4 SELECT * FROM * WHERE TotalConcurrent("L1","L2");

7 2.a.1.1 SELECT * FROM * WHERE NOT CanOccur("L1");

8 2.a.1.2 SELECT * FROM * WHERE NOT AlwaysOccurs("L1");

9 2.a.1.3 SELECT * FROM * WHERE NOT Cooccur("L1","L2");

10 2.a.1.4 SELECT * FROM * WHERE NOT Conflict("L1","L2");

11 2.a.1.5 SELECT * FROM * WHERE NOT TotalCausal("L1","L2");

12 2.a.1.6 SELECT * FROM * WHERE NOT TotalConcurrent("L1","L2");

13 2.a.2.1 SELECT * FROM * WHERE CanOccur("L1") AND CanOccur("L2");

14 2.a.2.2
SELECT * FROM * WHERE CanOccur("L1") AND

CanOccur("L2") AND CanOccur("L3");

15 2.a.2.3
SELECT * FROM * WHERE CanOccur("L1") AND

CanOccur("L2") AND CanOccur("L3") AND CanOccur("L4");

16 2.a.2.4 SELECT * FROM * WHERE AlwaysOccurs("L1") AND AlwaysOccurs("L2");

73

17 2.a.2.5
SELECT * FROM * WHERE AlwaysOccurs("L1") AND

AlwaysOccurs("L2") AND AlwaysOccurs("L3");

18 2.a.2.6
SELECT * FROM * WHERE AlwaysOccurs("L1") AND

AlwaysOccurs("L2") AND AlwaysOccurs("L3") AND AlwaysOccurs("L4");

19 2.a.2.7 SELECT * FROM * WHERE Cooccur("L1","L2") AND Cooccur("L3","L4");

20 2.a.2.8
SELECT * FROM * WHERE Cooccur("L1","L2") AND

Cooccur("L3","L4") AND Cooccur("L5","L6");

21 2.a.2.9
SELECT * FROM * WHERE Cooccur("L1","L2") AND

Cooccur("L3","L4") AND Cooccur("L5","L6") AND Cooccur("L7","L8");

22 2.a.2.10 SELECT * FROM * WHERE Conflict("L1","L2") AND Conflict("L3","L4");

23 2.a.2.11
SELECT * FROM * WHERE Conflict("L1","L2") AND

Conflict("L3","L4") AND Conflict("L5","L6");

24 2.a.2.12
SELECT * FROM * WHERE Conflict("L1","L2") AND

Conflict("L3","L4") AND Conflict("L5","L6") AND Conflict("L7","L8");

25 2.a.2.13
SELECT * FROM * WHERE TotalCausal("L1","L2") AND

TotalCausal("L3","L4");

26 2.a.2.14
SELECT * FROM * WHERE TotalCausal("L1","L2") AND

TotalCausal("L3","L4") AND TotalCausal("L5","L6");

27 2.a.2.15

SELECT * FROM * WHERE TotalCausal("L1","L2") AND

TotalCausal("L3","L4") AND TotalCausal("L5","L6") AND

TotalCausal("L7","L8");

28 2.a.2.16
SELECT * FROM * WHERE TotalConcurrent("L1","L2") AND

TotalConcurrent("L3","L4");

29 2.a.2.17
SELECT * FROM * WHERE TotalConcurrent("L1","L2") AND

TotalConcurrent("L3","L4") AND TotalConcurrent("L5","L6");

30 2.a.2.18

SELECT * FROM * WHERE TotalConcurrent("L1","L2") AND

TotalConcurrent("L3","L4") AND TotalConcurrent("L5","L6") AND

TotalConcurrent("L7","L8");

31 2.a.3.1 SELECT * FROM * WHERE CanOccur("L1") OR CanOccur("L2");

32 2.a.3.2
SELECT * FROM * WHERE CanOccur("L1") OR CanOccur("L2") OR

CanOccur("L3");

33 2.a.3.3
SELECT * FROM * WHERE CanOccur("L1") OR CanOccur("L2") OR

CanOccur("L3") OR CanOccur("L4");

34 2.a.3.4 SELECT * FROM * WHERE AlwaysOccurs("L1") OR AlwaysOccurs("L2");

35 2.a.3.5
SELECT * FROM * WHERE AlwaysOccurs("L1") OR AlwaysOccurs("L2") OR

AlwaysOccurs("L3");

36 2.a.3.6
SELECT * FROM * WHERE AlwaysOccurs("L1") OR AlwaysOccurs("L2") OR

AlwaysOccurs("L3") OR AlwaysOccurs("L4");

37 2.a.3.7 SELECT * FROM * WHERE Cooccur("L1","L2") OR Cooccur("L3","L4");

38 2.a.3.8
SELECT * FROM * WHERE Cooccur("L1","L2") OR Cooccur("L3","L4") OR

Cooccur("L5","L6");

39 2.a.3.9
SELECT * FROM * WHERE Cooccur("L1","L2") OR Cooccur("L3","L4") OR

Cooccur("L5","L6") OR Cooccur("L7","L8");

40 2.a.3.10 SELECT * FROM * WHERE Conflict("L1","L2") OR Conflict("L3","L4");

41 2.a.3.11
SELECT * FROM * WHERE Conflict("L1","L2") OR Conflict("L3","L4") OR

Conflict("L5","L6");

42 2.a.3.12
SELECT * FROM * WHERE Conflict("L1","L2") OR Conflict("L3","L4") OR

Conflict("L5","L6") OR Conflict("L7","L8");

43 2.a.3.13
SELECT * FROM * WHERE TotalCausal("L1","L2") OR

TotalCausal("L3","L4");

44 2.a.3.14
SELECT * FROM * WHERE TotalCausal("L1","L2") OR

TotalCausal("L3","L4") OR TotalCausal("L5","L6");

74

45 2.a.3.15

SELECT * FROM * WHERE TotalCausal("L1","L2") OR

TotalCausal("L3","L4") OR TotalCausal("L5","L6") OR

TotalCausal("L7","L8");

46 2.a.3.16
SELECT * FROM * WHERE TotalConcurrent("L1","L2") OR

TotalConcurrent("L3","L4");

47 2.a.3.17
SELECT * FROM * WHERE TotalConcurrent("L1","L2") OR

TotalConcurrent("L3","L4") OR TotalConcurrent("L5","L6");

48 2.a.3.18

SELECT * FROM * WHERE TotalConcurrent("L1","L2") OR

TotalConcurrent("L3","L4") OR TotalConcurrent("L5","L6") OR

TotalConcurrent("L7","L8");

49 2.b.1.1 SELECT * FROM * WHERE CanOccur("L1") AND Conflict("L2","L3");

50 2.b.1.2
SELECT * FROM * WHERE AlwaysOccurs("L1") AND

Cooccur("L2","L3") AND TotalConcurrent("L4","L5");

51 2.b.1.3
SELECT * FROM * WHERE Cooccur("L1","L2") AND

TotalCausal("L3","L4") AND TotalConcurrent("L5","L6");

52 2.b.2.1 SELECT * FROM * WHERE AlwaysOccurs("L1") OR Cooccur("L2","L3");

53 2.b.2.2
SELECT * FROM * WHERE CanOccur("L1") OR AlwaysOccurs("L2") OR

Conflict("L3","L4");

54 2.b.2.3
SELECT * FROM * WHERE Conflict("L1","L2") OR

TotalCausal("L3","L4") OR TotalConcurrent("L5","L6");

55 2.b.3.1
SELECT * FROM * WHERE AlwaysOccurs("L1") OR

(Cooccur("L2","L3") AND (NOT TotalCausal("L4","L5")));

56 2.b.3.2

SELECT * FROM * WHERE

(CanOccur("L1") AND (NOT Conflict("L2","L3"))) OR

(TotalConcurrent("L4","L5") AND AlwaysOccurs("L6"));

57 3.a.1.1 SELECT * FROM * WHERE CanOccur({"L1","L2"},ALL);
58 3.a.1.2 SELECT * FROM * WHERE CanOccur({"L1","L2","L3"},ALL);
59 3.a.1.3 SELECT * FROM * WHERE CanOccur({"L1","L2","L3","L4"},ALL);
60 3.a.1.4 SELECT * FROM * WHERE CanOccur({"L1","L2"},ANY);
61 3.a.1.5 SELECT * FROM * WHERE CanOccur({"L1","L2","L3"},ANY);
62 3.a.1.6 SELECT * FROM * WHERE CanOccur({"L1","L2","L3","L4"},ANY);
63 3.a.1.7 SELECT * FROM * WHERE AlwaysOccurs({"L1","L2"},ALL);
64 3.a.1.8 SELECT * FROM * WHERE AlwaysOccurs({"L1","L2","L3"},ALL);
65 3.a.1.9 SELECT * FROM * WHERE AlwaysOccurs({"L1","L2","L3","L4"},ALL);
66 3.a.1.10 SELECT * FROM * WHERE AlwaysOccurs({"L1","L2"},ANY);
67 3.a.1.11 SELECT * FROM * WHERE AlwaysOccurs({"L1","L2","L3"},ANY);
68 3.a.1.12 SELECT * FROM * WHERE AlwaysOccurs({"L1","L2","L3","L4"},ANY);

69 3.a.2.1 SELECT * FROM * WHERE Cooccur("L1",{"L2","L3"},ALL);
70 3.a.2.2 SELECT * FROM * WHERE Cooccur("L1",{"L2","L3","L4"},ALL);
71 3.a.2.3 SELECT * FROM * WHERE Cooccur("L1",{"L2","L3","L4","L5"},ALL);
72 3.a.2.4 SELECT * FROM * WHERE Cooccur("L1",{"L2","L3"},ANY);
73 3.a.2.5 SELECT * FROM * WHERE Cooccur("L1",{"L2","L3","L4"},ANY);
74 3.a.2.6 SELECT * FROM * WHERE Cooccur("L1",{"L2","L3","L4","L5"},ANY);
75 3.a.2.7 SELECT * FROM * WHERE Conflict("L1",{"L2","L3"},ALL);
76 3.a.2.8 SELECT * FROM * WHERE Conflict("L1",{"L2","L3","L4"},ALL);
77 3.a.2.9 SELECT * FROM * WHERE Conflict("L1",{"L2","L3","L4","L5"},ALL);
78 3.a.2.10 SELECT * FROM * WHERE Conflict("L1",{"L2","L3"},ANY);
79 3.a.2.11 SELECT * FROM * WHERE Conflict("L1",{"L2","L3","L4"},ANY);
80 3.a.2.12 SELECT * FROM * WHERE Conflict("L1",{"L2","L3","L4","L5"},ANY);
81 3.a.2.13 SELECT * FROM * WHERE TotalCausal("L1",{"L2","L3"},ALL);
82 3.a.2.14 SELECT * FROM * WHERE TotalCausal("L1",{"L2","L3","L4"},ALL);

75

83 3.a.2.15 SELECT * FROM * WHERE TotalCausal("L1",{"L2","L3","L4","L5"},ALL);
84 3.a.2.16 SELECT * FROM * WHERE TotalCausal("L1",{"L2","L3"},ANY);
85 3.a.2.17 SELECT * FROM * WHERE TotalCausal("L1",{"L2","L3","L4"},ANY);
86 3.a.2.18 SELECT * FROM * WHERE TotalCausal("L1",{"L2","L3","L4","L5"},ANY);
87 3.a.2.19 SELECT * FROM * WHERE TotalConcurrent("L1",{"L2","L3"},ALL);
88 3.a.2.20 SELECT * FROM * WHERE TotalConcurrent("L1",{"L2","L3","L4"},ALL);

89 3.a.2.21
SELECT * FROM * WHERE

TotalConcurrent("L1",{"L2","L3","L4","L5"},ALL);
90 3.a.2.22 SELECT * FROM * WHERE TotalConcurrent("L1",{"L2","L3"},ANY);
91 3.a.2.23 SELECT * FROM * WHERE TotalConcurrent("L1",{"L2","L3","L4"},ANY);

92 3.a.2.24
SELECT * FROM * WHERE

TotalConcurrent("L1",{"L2","L3","L4","L5"},ANY);

93 3.a.3.1 SELECT * FROM * WHERE Cooccur({"L1","L2"},{"L3","L4"},ALL);

94 3.a.3.2
SELECT * FROM * WHERE

Cooccur({"L1","L2","L3"},{"L4","L5","L6"},ALL);

95 3.a.3.3
SELECT * FROM * WHERE

Cooccur({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ALL);
96 3.a.3.4 SELECT * FROM * WHERE Cooccur({"L1","L2"},{"L3","L4"},ANY);

97 3.a.3.5
SELECT * FROM * WHERE

Cooccur({"L1","L2","L3"},{"L4","L5","L6"},ANY);

98 3.a.3.6
SELECT * FROM * WHERE

Cooccur({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ANY);
99 3.a.3.7 SELECT * FROM * WHERE Cooccur({"L1","L2"},{"L3","L4"},EACH);

100 3.a.3.8
SELECT * FROM * WHERE

Cooccur({"L1","L2","L3"},{"L4","L5","L6"},EACH);

101 3.a.3.9
SELECT * FROM * WHERE

Cooccur({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},EACH);
102 3.a.3.10 SELECT * FROM * WHERE Conflict({"L1","L2"},{"L3","L4"},ALL);

103 3.a.3.11
SELECT * FROM * WHERE

Conflict({"L1","L2","L3"},{"L4","L5","L6"},ALL);

104 3.a.3.12
SELECT * FROM * WHERE

Conflict({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ALL);
105 3.a.3.13 SELECT * FROM * WHERE Conflict({"L1","L2"},{"L3","L4"},ANY);

106 3.a.3.14
SELECT * FROM * WHERE

Conflict({"L1","L2","L3"},{"L4","L5","L6"},ANY);

107 3.a.3.15
SELECT * FROM * WHERE

Conflict({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ANY);
108 3.a.3.16 SELECT * FROM * WHERE Conflict({"L1","L2"},{"L3","L4"},EACH);

109 3.a.3.17
SELECT * FROM * WHERE

Conflict({"L1","L2","L3"},{"L4","L5","L6"},EACH);

110 3.a.3.18
SELECT * FROM * WHERE

Conflict({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},EACH);
111 3.a.3.19 SELECT * FROM * WHERE TotalCausal({"L1","L2"},{"L3","L4"},ALL);

112 3.a.3.20
SELECT * FROM * WHERE

TotalCausal({"L1","L2","L3"},{"L4","L5","L6"},ALL);

113 3.a.3.21
SELECT * FROM * WHERE

TotalCausal({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ALL);
114 3.a.3.22 SELECT * FROM * WHERE TotalCausal({"L1","L2"},{"L3","L4"},ANY);

115 3.a.3.23
SELECT * FROM * WHERE

TotalCausal({"L1","L2","L3"},{"L4","L5","L6"},ANY);

116 3.a.3.24
SELECT * FROM * WHERE

TotalCausal({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ANY);

76

117 3.a.3.25 SELECT * FROM * WHERE TotalCausal({"L1","L2"},{"L3","L4"},EACH);

118 3.a.3.26
SELECT * FROM * WHERE

TotalCausal({"L1","L2","L3"},{"L4","L5","L6"},EACH);

119 3.a.3.27
SELECT * FROM * WHERE

TotalCausal({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},EACH);
120 3.a.3.28 SELECT * FROM * WHERE TotalConcurrent({"L1","L2"},{"L3","L4"},ALL);

121 3.a.3.29
SELECT * FROM * WHERE

TotalConcurrent({"L1","L2","L3"},{"L4","L5","L6"},ALL);

122 3.a.3.30
SELECT * FROM * WHERE

TotalConcurrent({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ALL);
123 3.a.3.31 SELECT * FROM * WHERE TotalConcurrent({"L1","L2"},{"L3","L4"},ANY);

124 3.a.3.32
SELECT * FROM * WHERE

TotalConcurrent({"L1","L2","L3"},{"L4","L5","L6"},ANY);

125 3.a.3.33
SELECT * FROM * WHERE

TotalConcurrent({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},ANY);
126 3.a.3.34 SELECT * FROM * WHERE TotalConcurrent({"L1","L2"},{"L3","L4"},EACH);

127 3.a.3.35
SELECT * FROM * WHERE

TotalConcurrent({"L1","L2","L3"},{"L4","L5","L6"},EACH);

128 3.a.3.36
SELECT * FROM * WHERE

TotalConcurrent({"L1","L2","L3","L4"},{"L5","L6","L7","L8"},EACH);

129 3.b.1.1
SELECT * FROM * WHERE

"L1" IN GetTasksCanOccur({"L2","L3","L4"});

130 3.b.1.2
SELECT * FROM * WHERE

"L1" IN GetTasksAlwaysOccurs({"L2","L3","L4"});

131 3.b.2.1
SELECT * FROM * WHERE

"L1" IN GetTasksCooccur({"L2","L3"},{"L4","L5","L6"},ALL);

132 3.b.2.2
SELECT * FROM * WHERE

"L1" IN GetTasksCooccur({"L2","L3"},{"L4","L5","L6"},ANY);

133 3.b.2.3
SELECT * FROM * WHERE

"L1" IN GetTasksConflict({"L2","L3"},{"L4","L5","L6"},ALL);

134 3.b.2.4
SELECT * FROM * WHERE

"L1" IN GetTasksConflict({"L2","L3"},{"L4","L5","L6"},ANY);

135 3.b.2.5
SELECT * FROM * WHERE

"L1" IN GetTasksTotalCausal({"L2","L3"},{"L4","L5","L6"},ALL);

136 3.b.2.6
SELECT * FROM * WHERE

"L1" IN GetTasksTotalCausal({"L2","L3"},{"L4","L5","L6"},ANY);

137 3.b.2.7
SELECT * FROM * WHERE

"L1" IN GetTasksTotalConcurrent({"L2","L3"},{"L4","L5","L6"},ALL);

138 3.b.2.8
SELECT * FROM * WHERE

"L1" IN GetTasksTotalConcurrent({"L2","L3"},{"L4","L5","L6"},ANY);

139 3.b.3.1

SELECT * FROM * WHERE

"L1" IN GetTasksAlwaysOccurs({"L2","L3","L4"}) UNION

GetTasksTotalCausal({"L5","L6"},{"L7","L8","L9"},ALL);

140 3.b.3.2

SELECT * FROM * WHERE

"L1" IN GetTasksCanOccur({"L2","L3","L4"}) INTERSECT

GetTasksConflict({"L5","L6"},{"L7","L8","L9"},ANY);

141 3.b.3.3

SELECT * FROM * WHERE

"L1" IN GetTasksCooccur({"L2","L3"},{"L4","L5","L6"},ANY) EXCEPT

GetTasksTotalConcurrent({"L7","L8"},{"L9","L10","L11"},ANY);

77

142 3.b.3.4

SELECT * FROM * WHERE

"L1" IN (GetTasksCooccur({"L2","L3"},{"L4","L5","L6"},ANY) EXCEPT

GetTasksTotalConcurrent({"L7","L8"},{"L9","L10","L11"},ANY)) UNION

(GetTasksCanOccur({"L12","L13","L14"}) INTERSECT

GetTasksConflict({"L15","L16"},{"L17","L18","L19"},ALL));

143 3.b.3.5

SELECT * FROM * WHERE

"L1" IN (GetTasksCooccur({"L2","L3"},{"L4","L5","L6"},ANY) UNION

GetTasksTotalConcurrent({"L7","L8"},{"L9","L10","L11"},ALL))
INTERSECT (GetTasksCanOccur({"L12","L13","L14"}) EXCEPT

GetTasksConflict({"L15","L16"},{"L17","L18","L19"},ALL));

144 3.b.4.1

SELECT * FROM * WHERE ({"L1","L2","L3"} EXCEPT

GetTasksConflict({"L4","L5"},{"L6","L7","L8"},ALL)) EQUALS

GetTasksTotalCausal({"L9","L10"},{"L11","L12","L13"},ALL);

145 3.b.4.2

SELECT * FROM * WHERE

GetTasksCooccur({"L1","L2"},{"L3","L4","L5"},ANY) NOT EQUALS

GetTasksTotalConcurrent({"L6","L7"},{"L8","L9","L10"},ANY);

146 3.b.4.3

SELECT * FROM * WHERE ({"L1","L2","L3"} EXCEPT

GetTasksCooccur({"L4","L5"},{"L6","L7","L8"},ALL)) OVERLAPS WITH

GetTasksConflict({"L9","L10"},{"L11","L12","L13"},ANY);

147 3.b.4.4

SELECT * FROM * WHERE ({"L1","L2","L3"} EXCEPT

GetTasksAlwaysOccurs({"L4","L5","L6"}) IS SUBSET OF

GetTasksCanOccur({"L7","L8","L9"}));

148 3.b.4.5

SELECT * FROM * WHERE

GetTasksTotalCausal({"L1","L2"},{"L3","L4","L5"},ALL) IS PROPER

SUBSET OF ({"L6","L7","L8"} EXCEPT

GetTasksTotalConcurrent({"L9","L10"},{"L11","L12","L13"},ALL));

149 3.b.4.6

SELECT * FROM * WHERE

(GetTasksCooccur({"L1","L2"},{"L3","L4","L5"},ALL)) EQUALS

GetTasksTotalConcurrent({"L6","L7"},{"L8","L9","L10"},ALL) OR

((GetTasksCanOccur({"L11","L12","L13"}) OVERLAPS WITH

GetTasksConflict({"L14","L15"},{"L16","L17","L18"},ALL)) AND

(({"L19","L20","L21"} EXCEPT

GetTasksTotalCausal({"L22","L23"},{"L24","L25","L26"},ANY))
IS SUBSET OF GetTasksAlwaysOccurs({"L27","L28","L29"})));

150 3.b.4.7

SELECT * FROM * WHERE

(NOT (GetTasksCooccur({"L1","L2"},{"L3","L4","L5"},ANY) OVERLAPS

WITH GetTasksTotalConcurrent({"L6","L7"},{"L8","L9","L10"},ANY)))
AND ((GetTasksConflict({"L11","L12"},{"L13","L14","L15"},ALL)
IS PROPER SUBSET OF GetTasksCanOccur({"L16","L17","L18"}))
AND (({"L19","L20","L21"} EXCEPT

GetTasksTotalCausal({"L22","L23"},{"L24","L25","L26"},ALL))
NOT EQUALS GetTasksAlwaysOccurs({"L27","L28","L29"})));

78

